所以函數的取值范圍是. 查看更多

 

題目列表(包括答案和解析)

已知0.2x<25,求實數x的取值范圍.(2)因為0<0.2<1,所以指數函數f(x)=0.2x在R上是減函數.

查看答案和解析>>

已知函數.(

(1)若在區(qū)間上單調遞增,求實數的取值范圍;

(2)若在區(qū)間上,函數的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區(qū)間上單調遞增,則在區(qū)間上恒成立,然后分離參數法得到,進而得到范圍;第二問中,在區(qū)間上,函數的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。

解:(1)在區(qū)間上單調遞增,

在區(qū)間上恒成立.  …………3分

,而當時,,故. …………5分

所以.                 …………6分

(2)令,定義域為

在區(qū)間上,函數的圖象恒在曲線下方等價于在區(qū)間上恒成立.   

        …………9分

① 若,令,得極值點,,

,即時,在(,+∞)上有,此時在區(qū)間上是增函數,并且在該區(qū)間上有,不合題意;

,即時,同理可知,在區(qū)間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數;

要使在此區(qū)間上恒成立,只須滿足,

由此求得的范圍是.        …………13分

綜合①②可知,當時,函數的圖象恒在直線下方.

 

查看答案和解析>>

設函數,數列滿足

⑴求數列的通項公式;

⑵設,若恒成立,求實數的取值范圍;

⑶是否存在以為首項,公比為的數列,,使得數列中每一項都是數列中不同的項,若存在,求出所有滿足條件的數列的通項公式;若不存在,說明理由

查看答案和解析>>

設函數,數列滿足
⑴求數列的通項公式;
⑵設,若恒成立,求實數的取值范圍;
⑶是否存在以為首項,公比為的數列,,使得數列中每一項都是數列中不同的項,若存在,求出所有滿足條件的數列的通項公式;若不存在,說明理由.

查看答案和解析>>

設函數,數列滿足
⑴求數列的通項公式;
⑵設,若恒成立,求實數的取值范圍;
⑶是否存在以為首項,公比為的數列,,使得數列中每一項都是數列中不同的項,若存在,求出所有滿足條件的數列的通項公式;若不存在,說明理由.

查看答案和解析>>


同步練習冊答案