設(shè)函數(shù),數(shù)列滿足
⑴求數(shù)列的通項(xiàng)公式;
⑵設(shè),若恒成立,求實(shí)數(shù)的取值范圍;
⑶是否存在以為首項(xiàng),公比為的數(shù)列,使得數(shù)列中每一項(xiàng)都是數(shù)列中不同的項(xiàng),若存在,求出所有滿足條件的數(shù)列的通項(xiàng)公式;若不存在,說明理由.

(1);(2);(3)存在,理由詳見解析.

解析試題分析:(1)將利用進(jìn)行化簡,得到關(guān)于的遞推關(guān)系式,根據(jù)其特點(diǎn),求其通項(xiàng)公式;(2)本題關(guān)鍵是求出,根據(jù)其表達(dá)式的特點(diǎn),可每兩項(xiàng)組合后提取公因式后,轉(zhuǎn)化為等差數(shù)列求和,但要注意對,分奇偶性討論,求出后,恒成立再分離參數(shù)后轉(zhuǎn)化為求最值問題,容易求出實(shí)數(shù)的取值范圍;(3)此類問題,一般先假設(shè)存在符合條件的數(shù)列,解出來則存在,如果得到矛盾的結(jié)果,則假設(shè)錯誤,這樣的數(shù)列則不存在.
試題解析:⑴因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/58/b/1velp3.png" style="vertical-align:middle;" />,
所以.                            2分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/80/a/mbocy.png" style="vertical-align:middle;" />,所以數(shù)列是以1為首項(xiàng),公差為的等差數(shù)列.
所以.                            4分
⑵①當(dāng)時,



.                         6分
②當(dāng)時,


.                8分
所以 要使恒成立,
只要使為偶數(shù)恒成立.
只要使為偶數(shù)恒成立,故實(shí)數(shù)的取值范圍為. 10分
⑶由,知數(shù)列中每一項(xiàng)都不可能是偶數(shù).
①如存在以為首項(xiàng),公比為2或4的數(shù)列,
此時中每一項(xiàng)除第一項(xiàng)外都是偶數(shù),故不存在以為首項(xiàng),公比為偶數(shù)的數(shù)列. 12分
②當(dāng)時,顯然不存在這樣的數(shù)列
當(dāng)時,若存在以為首項(xiàng),公比為3的數(shù)列
,,
所以滿足條件的數(shù)列的通項(xiàng)公式為.          16分
考點(diǎn):等差數(shù)列、等比數(shù)列與函數(shù)、不等式的綜合運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知an=n×0.8n(n∈N*).
(1)判斷數(shù)列{an}的單調(diào)性;
(2)是否存在最小正整數(shù)k,使得數(shù)列{an}中的任意一項(xiàng)均小于k?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線,過上一點(diǎn)作一斜率為的直線交曲線于另一點(diǎn),點(diǎn)列的橫坐標(biāo)構(gòu)成數(shù)列,其中.
(1)求的關(guān)系式;
(2)令,求證:數(shù)列是等比數(shù)列;
(3)若為非零整數(shù),),試確定的值,使得對任意,都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列的前項(xiàng)和為,滿足:.遞增的等比數(shù)列項(xiàng)和為,滿足:
(Ⅰ)求數(shù)列,的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列,均有成立,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列,,,
(1)求證:為等比數(shù)列,并求出通項(xiàng)公式;
(2)記數(shù)列 的前項(xiàng)和為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知{an}是等差數(shù)列,a1=3,Sn是其前n項(xiàng)和,在各項(xiàng)均為正數(shù)的等比數(shù)列{bn}中,b1=1,且b2+S2=10,S5 =5b3+3a2.
(I )求數(shù)列{an}, {bn}的通項(xiàng)公式;
(II)設(shè),數(shù)列{cn}的前n項(xiàng)和為Tn,求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列是等差數(shù)列,且;又若是各項(xiàng)為正數(shù)的等比數(shù)列,且滿足,其前項(xiàng)和為.
(1)分別求數(shù)列,的通項(xiàng)公式,;
(2)設(shè)數(shù)列的前項(xiàng)和為,求的表達(dá)式,并求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的各項(xiàng)均為正數(shù),為其前項(xiàng)和,對于任意的,滿足關(guān)系式
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的通項(xiàng)公式是,前項(xiàng)和為,求證:對于任意的正整數(shù),總有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列,即當(dāng)時,記.記. 對于,定義集合的整數(shù)倍,,且.
(1)求集合中元素的個數(shù);
(2)求集合中元素的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案