(文)函數(shù)是 A.奇函數(shù) B.偶函數(shù) C.既是奇函數(shù)又是偶函數(shù) D.非奇非偶函數(shù) 查看更多

 

題目列表(包括答案和解析)

(文)已知R為實(shí)數(shù)集,Q為有理數(shù)集.設(shè)函數(shù)f(x)=
0,(x∈CRQ)
1,(x∈Q).
則(  )

查看答案和解析>>

(文)若函數(shù)是奇函數(shù),且在(),內(nèi)是增函數(shù),,則不等式 的解集為               (    )

         A.                B.        

         C.                    D.         

查看答案和解析>>

(文)若奇函數(shù)在區(qū)間上是減函數(shù),且,則不等式

 

的解集為        (    )

A.    B.

C.       D.

 

查看答案和解析>>

(文)已知函數(shù)是定義在區(qū)間上的奇函數(shù),的最大值與最小值之和為

A.0      B.1       C.2        D.不能確定

 

查看答案和解析>>

(文)下列函數(shù)中,不是奇函數(shù)的是(  )
A.y=lg(x+
x2+1
)
B.y=5-x+5xC.y=lg
x+5
x-5
D.y=
ex-e-x
2

查看答案和解析>>

 

一、選擇題

1―5 CADBA    6―10 CBABD    11―12 CC

二、填空題

13.(理)(文)(―1,1)    14.    15.(理)18(文)(1,0)

16.①③

三、解答題

17.解:(1)由題意得   ………………2分

   

   (2)由可知A、B都是銳角,   …………7分

   

    這時(shí)三角形為有一頂角為120°的等腰三角形   …………12分

18.(理)解:(1)ξ的所有可能的取值為0,1,2,3。  ………………2分

   

   (2)   ………………12分

   (文)解:(1);  ………………6分

   (2)因?yàn)?sub>

      …………10分

    所以   …………12分

19.解:(1),   ………………1分

    依題意知,   ………………3分

   (2)令   …………4分

     …………5分

    所以,…………7分

   (3)由上可知

    ①當(dāng)恒成立,

    必須且只須, …………8分

    ,

     則   ………………9分

    ②當(dāng)……10分

    要使當(dāng)

    綜上所述,t的取值范圍是   ………………12分

20.解法一:(1)取BB1的中點(diǎn)D,連CD、AD,則∠ACD為所求!1分

   

   (2)方法一 作CE⊥AB于E,C1E1⊥A1B1于E1,連EE1,

則AB⊥面CC1E1E,因此平面PAB⊥面CC1E1E。

因?yàn)锳1B1//AB,所以A1B1//平面PAB。則只需求點(diǎn)E1到平面PAB的距離。

作E1H⊥EP于H,則E1H⊥平面PAB,則E1H即為所求距離。  …………6分

求得 …………8分

方法二:設(shè)B1到平面PAB的距離為h,則由

  ………………8分

   (3)設(shè)平面PAB與平面PA1B1的交線(xiàn)為l,由(2)知,A1B1//平面PAB,

則A1B1//l,因?yàn)锳B⊥面CC1E1E,則l⊥面CC1E1E,

所以∠EPE1就是二面有AB―P―A1B的平面角。 ………………9分

要使平面PAB⊥平面PA1B1,只需∠EPE1=90°。  ………………10分

在矩形CEE1C1中,

解得

        解法二:(1)取B1C1的中點(diǎn)O,則A1O⊥B1C1,

        以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系如圖,

           (2)是平面PAB的一個(gè)法向量,

           ………………5分

           ………………6分

          ………………8分

           (3)設(shè)P點(diǎn)坐標(biāo)為(),則

        設(shè)是平面PAB的一個(gè)法向量,與(2)同理有

            令

            同理可求得平面PA1B1的一個(gè)法向量   ………………10分

            要使平面PAB⊥平面PA1B1,只需

              ………………11分

            解得: …………12分

        21.(理)解:(1)由條件得

           

           (2)①設(shè)直線(xiàn)m ……5分

           

            ②不妨設(shè)M,N的坐標(biāo)分別為

        …………………8分

        因直線(xiàn)m的斜率不為零,故

           (文)解:(1)設(shè)  …………2分

           

            故所求雙曲線(xiàn)方程為:

           (2)設(shè),

           

            由焦點(diǎn)半徑,  ………………8分

           

        22.(1)證明:

            所以在[0,1]上為增函數(shù),   ………………3分

           (2)解:由

           

           (3)解:由(1)與(2)得 …………9分

            設(shè)存在正整數(shù)k,使得對(duì)于任意的正整數(shù)n,都有成立,

               ………………10分

           

            ,   ………………11分

            當(dāng),   ………………12分

            當(dāng)    ………………13分

            所在存在正整數(shù)

            都有成立.   ………………14分

         

         

         

         


        同步練習(xí)冊(cè)答案