已知函數(shù)取極值. (1)求實數(shù)k的值, 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=在x=0,x=處存在極值。

(Ⅰ)求實數(shù)a,b的值;

(Ⅱ)函數(shù)y=f(x)的圖象上存在兩點A,B使得△AOB是以坐標原點O為直角頂點的直角三角形,且斜邊AB的中點在y軸上,求實數(shù)c的取值范圍;

(Ⅲ)當c=e時,討論關于x的方程f(x)=kx(k∈R)的實根個數(shù)。

 

查看答案和解析>>

已知函數(shù)的最小值為0,其中

(Ⅰ)求的值;

(Ⅱ)若對任意的成立,求實數(shù)的最小值;

(Ⅲ)證明).

【解析】(1)解: 的定義域為

,得

當x變化時,,的變化情況如下表:

x

-

0

+

極小值

因此,處取得最小值,故由題意,所以

(2)解:當時,取,有,故時不合題意.當時,令,即

,得

①當時,,上恒成立。因此上單調(diào)遞減.從而對于任意的,總有,即上恒成立,故符合題意.

②當時,,對于,故上單調(diào)遞增.因此當取時,,即不成立.

不合題意.

綜上,k的最小值為.

(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.

時,

                      

                      

在(2)中取,得 ,

從而

所以有

     

     

     

     

      

綜上,,

 

查看答案和解析>>

(12分)已知函數(shù)

 

(1)設,若函數(shù)在區(qū)間上存在極值,求實數(shù)a的取值范圍;

 

(2)如果當時,不等式恒成立,求實數(shù)k的取值范圍。

 

 

查看答案和解析>>

已知函數(shù)f(x)=在x=0,x=處存在極值。
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)函數(shù)y=f(x)的圖象上存在兩點A,B使得△AOB是以坐標原點O為直角頂點的直角三角形,且斜邊AB的中點在y軸上,求實數(shù)c的取值范圍;
(Ⅲ)當c=e時,討論關于x的方程f(x)=kx(k∈R)的實根個數(shù)。

查看答案和解析>>

已知函數(shù)
(Ⅰ)設a>0,若函數(shù)在區(qū)間上存在極值,求實數(shù)a的取值范圍;
(Ⅱ)如果當x≥1時,不等式恒成立,求實數(shù)k的取值范圍。

查看答案和解析>>

 

一、選擇題

1―5 CADBA    6―10 CBABD    11―12 CC

二、填空題

13.(理)(文)(―1,1)    14.    15.(理)18(文)(1,0)

16.①③

三、解答題

17.解:(1)由題意得   ………………2分

   

   (2)由可知A、B都是銳角,   …………7分

   

    這時三角形為有一頂角為120°的等腰三角形   …………12分

18.(理)解:(1)ξ的所有可能的取值為0,1,2,3。  ………………2分

   

   (2)   ………………12分

   (文)解:(1);  ………………6分

   (2)因為

      …………10分

    所以   …………12分

19.解:(1),   ………………1分

    依題意知,   ………………3分

   (2)令   …………4分

     …………5分

    所以,…………7分

   (3)由上可知

    ①當恒成立,

    必須且只須, …………8分

    ,

     則   ………………9分

    ②當……10分

    要使當

    綜上所述,t的取值范圍是   ………………12分

20.解法一:(1)取BB1的中點D,連CD、AD,則∠ACD為所求!1分

   

   (2)方法一 作CE⊥AB于E,C1E1⊥A1B1于E1,連EE1,

則AB⊥面CC1E1E,因此平面PAB⊥面CC1E1E。

因為A1B1//AB,所以A1B1//平面PAB。則只需求點E1到平面PAB的距離。

作E1H⊥EP于H,則E1H⊥平面PAB,則E1H即為所求距離。  …………6分

求得 …………8分

方法二:設B1到平面PAB的距離為h,則由

  ………………8分

   (3)設平面PAB與平面PA1B1的交線為l,由(2)知,A1B1//平面PAB,

則A1B1//l,因為AB⊥面CC1E1E,則l⊥面CC1E1E,

所以∠EPE1就是二面有AB―P―A1B的平面角。 ………………9分

要使平面PAB⊥平面PA1B1,只需∠EPE1=90°。  ………………10分

在矩形CEE1C1中,

解得

            <nav id="4coos"><dl id="4coos"></dl></nav>

            解法二:(1)取B1C1的中點O,則A1O⊥B1C1,

            以O為坐標原點,建立空間直角坐標系如圖,

               (2)是平面PAB的一個法向量,

               ………………5分

               ………………6分

              ………………8分

               (3)設P點坐標為(),則

            是平面PAB的一個法向量,與(2)同理有

                令

                同理可求得平面PA1B1的一個法向量   ………………10分

                要使平面PAB⊥平面PA1B1,只需

                  ………………11分

                解得: …………12分

            21.(理)解:(1)由條件得

               

               (2)①設直線m ……5分

               

                ②不妨設M,N的坐標分別為

            …………………8分

            因直線m的斜率不為零,故

               (文)解:(1)設  …………2分

               

                故所求雙曲線方程為:

               (2)設,

               

                由焦點半徑,  ………………8分

               

            22.(1)證明:

                所以在[0,1]上為增函數(shù),   ………………3分

               (2)解:由

               

               (3)解:由(1)與(2)得 …………9分

                設存在正整數(shù)k,使得對于任意的正整數(shù)n,都有成立,

                   ………………10分

               

                ,   ………………11分

                當,   ………………12分

                當    ………………13分

                所在存在正整數(shù)

                都有成立.   ………………14分

             

             

             

             


            同步練習冊答案