題目列表(包括答案和解析)
已知函數(shù),其中是 的導(dǎo)函數(shù)。
(1)若在處的導(dǎo)數(shù)為4,求實(shí)數(shù)的值;
(2)對(duì)滿(mǎn)足的一切的值,都有,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),函數(shù)的圖象與直線(xiàn)只有一個(gè)公共點(diǎn),
求實(shí)數(shù)的取值范圍。
已知函數(shù)是定義域?yàn)镽的偶函數(shù),其圖像均在x軸的上方,對(duì)任意的,都有,且,又當(dāng)時(shí),其導(dǎo)函數(shù)恒成立。
(Ⅰ)求的值;
(Ⅱ)解關(guān)于x的不等式:,其中
已知函數(shù)f(x) = (k為常數(shù),e=2.71828……是自然對(duì)數(shù)的底數(shù)),曲線(xiàn)y= f(x)在點(diǎn)(1,f(1))處的切線(xiàn)與x軸平行。
(Ⅰ)求k的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)設(shè)g(x)=(x2+x) ,其中為f(x)的導(dǎo)函數(shù),證明:對(duì)任意x>0,。
已知函數(shù)(k為常數(shù),e=2.71828……是自然對(duì)數(shù)的底數(shù)),曲線(xiàn)在點(diǎn)處的切線(xiàn)與x軸平行。
(1)求k的值;
(2)求的單調(diào)區(qū)間;
(3)設(shè),其中為的導(dǎo)函數(shù),證明:對(duì)任意,。
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013080512213268898492/SYS201308051222069045733946_ST.files/image002.png">,部分對(duì)應(yīng)值如下表。的導(dǎo)函數(shù)的圖像如圖所示。
0 |
|||||
下列關(guān)于函數(shù)的命題:
①函數(shù)在上是減函數(shù);②如果當(dāng)時(shí),最大值是,那么的最大值為;③函數(shù)有個(gè)零點(diǎn),則;④已知是的一個(gè)單調(diào)遞減區(qū)間,則的最大值為。
其中真命題的個(gè)數(shù)是( )
A、4個(gè) B、3個(gè) C、2個(gè) D、1個(gè)
一.選擇題
1.B 2.B 3. A 4.A 5.C 6. D 7.B 8.D 9.B 10.A 11.C 12.C
二.填空題
13.(1, )∪( ,2) 14. 15. 16. ②③④
三.解答題
17.解:(1)兩學(xué)生成績(jī)績(jī)的莖葉圖如圖所示……………4分
(2)將甲、乙兩學(xué)生的成績(jī)從小到大排列為:
甲: 512 522 528 534 536 538 541 549 554 556
乙:515 521 527 531 532 536 543 548 558 559
從以上排列可知甲學(xué)生成績(jī)的中位數(shù)為……6分
乙學(xué)生成績(jī)的中位數(shù)為 …………8分
甲學(xué)生成績(jī)的平均數(shù)為:
……………10分
乙學(xué)生成績(jī)的平均數(shù)為:
……………12分
18.解:(1)∵
∴,
∴,∴ ∵ ∈(0,π) ∴ ……4分
(2)∵ ∴,即 ① …………6分
又 ∴,即 ② …………8分
由①②可得,∴ ………………………………………10分
又∴, ……………………………………12分
高三數(shù)學(xué)試題答案(文科)(共4頁(yè))第1頁(yè)
19.(I)設(shè)是的中點(diǎn),連結(jié),則四邊形為正方形,……………2分
.故,,,,即.
………………………4分
又,平面,…………………………6分
(II)證明:DC的中點(diǎn)即為E點(diǎn), ………………………………………………8分
連D1E,BE ∴四邊形ABED是平行四邊形,
∴ADBE,又ADA1D1 A1D1 ∴四邊形A1D1EB是平行四邊形 D1E//A1B ,
∵D1E平面A1BD ∴D1E//平面A1BD!12分
20.解:(1)設(shè)這二次函數(shù)f(x)=ax2+bx (a≠0) ,則
得a=3 , b=-2, 所以 f(x)=3x2-2x. ……………………………………3分
又因?yàn)辄c(diǎn)均在函數(shù)的圖像上,所以=3n2-2n.
當(dāng)n≥2時(shí),an=Sn-Sn-1=(3n2-2n)-=6n-5.
當(dāng)n=1時(shí),a1=S1=3×12-2=6×1-5,所以,an=6n-5 ()………6分
(2)由(1)得知==,……8分
故Tn===(1-)………10分
因此,要使(1-)<()成立的m,必須且僅須滿(mǎn)足
≤,即m≥10,所以滿(mǎn)足要求的最小正整數(shù)m為10. ………………………12分
|