題目列表(包括答案和解析)
若、是兩條不同的直線,、是兩個不同的平面,則下列命題中不正確的是( )
A.若∥,,則
B.若∥,,則
C.若∥,,則
D.若,與、所成的角相等,則
若α、β是兩個不同的平面,m、n是兩條不同直線,則下列命題不正確的是
A.α∥β,m⊥α,則m⊥β
B.m∥n,m⊥α,則n⊥α
C. n∥α,n⊥β,則α⊥β
D.αβ=m,n與α、β所成的角相等,則m⊥n
若α、β是兩個不同的平面,m、n是兩條不同直線,則下列命題不正確的是
A.α∥β,m⊥α,則m⊥β |
B.m∥n,m⊥α,則n⊥α |
C. n∥α,n⊥β,則α⊥β |
D.αβ=m,n與α、β所成的角相等,則m⊥n |
若、是兩條不同的直線,、是兩個不同的平面,則下列命題中不正確的是( )
A.若∥,,則 |
B.若∥,,則 |
C.若∥,,則 |
D.若,與、所成的角相等,則 |
A.α∥β,m⊥α,則m⊥β |
B.m∥n,m⊥α,則n⊥α |
C. n∥α,n⊥β,則α⊥β |
D.αβ=m,n與α、β所成的角相等,則m⊥n |
一、選擇題:本大題12個小題,每小題5分,共60分.
BBDDC DA CDA CA
二、填空題:本大題共4個小題,每小題4分,共16分.
13、i≥11,或i>10; 14、2 ; 15、2 ;16.①②③④ ①③②④
三、解答題:本大題共6個小題,滿分74分.
17.解∵= =∴+=
故f(x)=(+)?+k=
=
= …………………………4分
(1)由題意可知,∴又>1,∴0≤≤1 ……………………6分
(2)∵T=,∴=1 ∴f (x)=sin(2x-)+k+
∵x∈ ………………8分
從而當2x-=即x=時fmax(x)=f()=sin+k+=k+1=
∴k=- 故f (x)=sin(2x-)…………………12分
18、(本小題滿分12分)由a、b、c成等差數列
得a+c=2b 平方得a2+c2=4b2-
又S△ABC=且sin B=, ∴S△ABC=ac? sin B=ac×=ac=
故ac= ②………………………………………………………………………4分
由①②可得a2+c2=4b2- ③…………………………………………………5分
又∵sin B=,且a、b、c成等差數列∴cos B===…………8分
由余弦定理得: b2=a2+c2-
由③④可得 b2=4∴b=2………………….…12分
19、略解:(Ⅰ)∵數列{an}的前n項和為 ∴a1= S1=1…………(1分)
當n≥2時,an= Sn- Sn-1=n………………(3分) ∴an=n………………(4分)
(Ⅱ)由若b1=1,2bn-bn-1=0得…………(5分)
∴{bn}是以b1=1為首項,1/2為公比的等比數列. …………(6分)
…………(8分) ∴………(9分)
………(10分)
兩式相減得: ………(11分)
∴ Tn<4………(12分)
20、解:(I)將圓C配方得:(x+1)2+(y-2)2=2………………(1分)
21、解:(1)Q為PN的中點且GQ⊥PN
GQ為PN的中垂線|PG|=|GN| …………2分
∴|GN|+|GM|=|MP|=6,故G點的軌跡是以M、N為焦點的橢圓,其長半軸長,半焦距,∴短半軸長b=2,∴點G的軌跡方程是……4分
(2)因為,所以四邊形OASB為平行四邊形
若存在l使得||=||,則四邊形OASB為矩形
若l的斜率不存在,直線l的方程為x=2,由
矛盾,故l的斜率存在. …………6分
設l的方程為
①
② …………10分
把①、②代入∴存在直線使得四邊形OASB的對角線相等. …12分
22、解:(Ⅰ)
因為函數f(x)在區(qū)間[-1,1]上是增函數,所以f‘(x)≥0在區(qū)間x∈[-1,1]恒成立
即有x2-ax-2≤0在區(qū)間[-1,1]上恒成立。 構造函數g(x)=x2-ax-2
∴滿足題意的充要條件是:
所以所求的集合A[-1,1] ………(7分)
(Ⅱ)由題意得:得到:x2-ax-2=0………(8分)
因為△=a2+8>0 所以方程恒有兩個不等的根為x1、x2由根與系數的關系有:……(9分)
因為a∈A即a∈[-1,1],所以要使不等式對任意a∈A及t∈[-1,1]恒成立,當且僅當對任意的t∈[-1,1]恒成立……(11分)
構造函數φ(x)=m2+tm-2=mt+(m2-2) ≥0對任意的t∈[-1,1]恒成立的充要條件是
m≥2或m≤-2.故存在實數m滿足題意且為
{m| m≥2或m≤-2}為所求 (14分)
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com