題目列表(包括答案和解析)
(09年海淀區(qū)二模理)(14分)
如圖,斜三棱柱的底面是直角三角形,,點在底面上的射影恰好是的中點,且.
(Ⅰ)求證:平面平面;
(Ⅱ)求證:;
(Ⅲ)求二面角的大小.
(本小題滿分12分)
已知平行六面體的底面為正方形,分別為上、下底面的中心,且在底面的射影是。
(Ⅰ)求證:平面平面;
(Ⅱ)若點分別在棱上上,且,問點在何處時,;
(Ⅲ)若,求二面角的大。ㄓ梅慈呛瘮(shù)表示)。
已知幾何體的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.
(1)求異面直線與所成角的余弦值;
(2)求二面角的正弦值;
(3)求此幾何體的體積的大小
一個多面體的直觀圖和三視圖如圖所示,其中、分別是、的中點,是上的一動點,主視圖與俯視圖都為正方形。
⑴求證:;
⑵當(dāng)時,在棱上確定一點,使得∥平面,并給出證明。
⑶求二面角的平面角余弦值。
如圖所示的長方體中,底面是邊長為的正方形,為與的交點,,是線段的中點.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求二面角的大小.
【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運用。中利用,又平面,平面,∴平面由,,又,∴平面. 可得證明
(3)因為∴為面的法向量.∵,,
∴為平面的法向量.∴利用法向量的夾角公式,,
∴與的夾角為,即二面角的大小為.
方法一:解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系.連接,則點、,
∴,又點,,∴
∴,且與不共線,∴.
又平面,平面,∴平面.…………………4分
(Ⅱ)∵,
∴,,即,,
又,∴平面. ………8分
(Ⅲ)∵,,∴平面,
∴為面的法向量.∵,,
∴為平面的法向量.∴,
∴與的夾角為,即二面角的大小為
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com