將式得 查看更多

 

題目列表(包括答案和解析)

當(dāng)今世界進(jìn)入了計(jì)算機(jī)時(shí)代,我們知道計(jì)算機(jī)裝置有一個(gè)數(shù)據(jù)輸入口A和一運(yùn)算結(jié)果輸出口B,某同學(xué)編入下列運(yùn)算程序,將數(shù)據(jù)輸入且滿足以下性質(zhì):
①?gòu)腁輸入1時(shí),從B得到
1
3
;
②從A輸入整數(shù)n(n≥2)時(shí),在B得到的結(jié)果f(n)是將前一結(jié)果f(n-1)先乘以奇數(shù)2n-3,再除以奇數(shù)2n+1.
(1)求f(2),f(3),f(4);
(2)試由(1)推測(cè)f(n)的表達(dá)式,并用數(shù)學(xué)歸納法證明;
(3)求
lim
n→∞
f(1)+f(2)+…+f(n)

查看答案和解析>>

當(dāng)今世界進(jìn)入了計(jì)算機(jī)時(shí)代,我們知道計(jì)算機(jī)裝置有一個(gè)數(shù)據(jù)輸入口A和一運(yùn)算結(jié)果輸出口B,某同學(xué)編入下列運(yùn)算程序,將數(shù)據(jù)輸入且滿足以下性質(zhì):
①?gòu)腁輸入1時(shí),從B得到數(shù)學(xué)公式;
②從A輸入整數(shù)n(n≥2)時(shí),在B得到的結(jié)果f(n)是將前一結(jié)果f(n-1)先乘以奇數(shù)2n-3,再除以奇數(shù)2n+1.
(1)求f(2),f(3),f(4);
(2)試由(1)推測(cè)f(n)的表達(dá)式,并用數(shù)學(xué)歸納法證明;
(3)求數(shù)學(xué)公式

查看答案和解析>>

當(dāng)今世界進(jìn)入了計(jì)算機(jī)時(shí)代,我們知道計(jì)算機(jī)裝置有一個(gè)數(shù)據(jù)輸入口A和一運(yùn)算結(jié)果輸出口B,某同學(xué)編入下列運(yùn)算程序,將數(shù)據(jù)輸入且滿足以下性質(zhì):
①?gòu)腁輸入1時(shí),從B得到;
②從A輸入整數(shù)n(n≥2)時(shí),在B得到的結(jié)果f(n)是將前一結(jié)果f(n-1)先乘以奇數(shù)2n-3,再除以奇數(shù)2n+1.
(1)求f(2),f(3),f(4);
(2)試由(1)推測(cè)f(n)的表達(dá)式,并用數(shù)學(xué)歸納法證明;
(3)求

查看答案和解析>>

當(dāng)今世界進(jìn)入了計(jì)算機(jī)時(shí)代,我們知道計(jì)算機(jī)裝置有一個(gè)數(shù)據(jù)輸入口A和一個(gè)運(yùn)算結(jié)果的輸出口B,某同學(xué)編入下列運(yùn)算程序,將數(shù)據(jù)輸入且滿足以下性質(zhì):①?gòu)?/FONT>A輸入1時(shí),從B得到.②從A輸入整數(shù)n(n2)時(shí),從B得到的結(jié)果f(n)是將前一結(jié)果f(n1)先乘以奇數(shù)2n3,再除以奇數(shù)2n1

(1)f(2),f(3),f(4);

(2)試由(1)推測(cè)f(n)的表達(dá)式,并給出證明.

查看答案和解析>>

數(shù)學(xué)家歐拉

  歐拉(Euler),瑞士數(shù)學(xué)家及自然科學(xué)家.1707年4月15日出生于瑞士的巴塞爾,1783年9月18日于俄國(guó)彼得堡去逝.歐拉出生于牧師家庭,自幼受父親的教育,13歲時(shí)入讀巴塞爾大學(xué),15歲大學(xué)畢業(yè),16歲獲碩士學(xué)位.

  歐拉是18世紀(jì)數(shù)學(xué)界最杰出的人物之一,他不但為數(shù)學(xué)界做出了巨大的貢獻(xiàn),更把數(shù)學(xué)推至幾乎整個(gè)物理的領(lǐng)域.他是數(shù)學(xué)史上最多產(chǎn)的數(shù)學(xué)家,平均每年寫出八百多頁的論文,還寫了大量的力學(xué)、分析學(xué)、幾何學(xué)、變分法等的課本,《無窮小分析引論》、《微分學(xué)原理》、《積分學(xué)原理》等都成為數(shù)學(xué)中的經(jīng)典著作.

  歐拉對(duì)數(shù)學(xué)符號(hào)的創(chuàng)立及推廣起了積極的作用.比如用e表示自然對(duì)數(shù)的底,用i表示-1,用f(x)作為函數(shù)的符號(hào),π雖不是歐拉首先提出的,但是在歐拉倡導(dǎo)下推廣普及的.尤為不可思議的是歐拉將數(shù)學(xué)中最為活躍的五個(gè)數(shù)1,0,π,e,i竟用一個(gè)美妙絕倫的公式聯(lián)系了起來:eiπ+1=0(歐拉指數(shù)公式),在西方數(shù)學(xué)界甚至認(rèn)為此公式不亞于神的力量.

  歐拉對(duì)數(shù)學(xué)的研究如此廣泛,因此在許多數(shù)學(xué)的分支中也可經(jīng)常見到以他的名字命名的重要常數(shù)、公式和定理.

1.你對(duì)歐拉(Euler)了解嗎?請(qǐng)查閱歐拉(Euler)的故事,對(duì)于他“13歲時(shí)入讀巴塞爾大學(xué),15歲大學(xué)畢業(yè),16歲獲碩士學(xué)位”,你有何感觸?

2.作為新時(shí)代的青年,你做好將來為科學(xué)事業(yè)做貢獻(xiàn)的思想準(zhǔn)備了嗎?

查看答案和解析>>


同步練習(xí)冊(cè)答案