18.一袋子中有大小相同的2個紅球和3個黑球.從袋子里隨機取球.取到每個球的可能性是相同的.設取到一個紅球得2分.取到一個黑球得1分. (Ⅰ)若從袋子里一次隨機取出3個球.求得4分的概率, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)一袋子中有大小、質量均相同的10個小球,其中標記“開”字的小球有5個,標記“心”字的小球有3個,標記“樂”字的小球有2個.從中任意摸出1個球確定標記后放回袋中,再從中任取1個球.不斷重復以上操作,最多取3次,并規(guī)定若取出“樂”字球,則停止摸球.求:

(Ⅰ)恰好摸到2個“心”字球的概率;

(Ⅱ)摸球次數(shù)的概率分布列和數(shù)學期望.

 

查看答案和解析>>

(本小題滿分12分)一袋子中有大小相同的2個紅球和3個黑球,從袋子里隨機取球,取到每個球的可能性是相同的,設取到一個紅球得2分,取到一個黑球得1分。

(1)若從袋子里一次隨機取出3個球,求得4分的概率;

(2)若從袋子里每次摸出一個球,看清顏色后放回,連續(xù)摸3次,求得分的概率分布列及數(shù)學期望。

 

查看答案和解析>>

(本小題滿分12分)一袋子中有大小相同的2個紅球和3個黑球,從袋子里隨機取球,取到每個球的可能性是相同的,設取到一個紅球得2分,取到一個黑球得1分。
(1)若從袋子里一次隨機取出3個球,求得4分的概率;
(2)若從袋子里每次摸出一個球,看清顏色后放回,連續(xù)摸3次,求得分的概率分布列及數(shù)學期望。

查看答案和解析>>

(本小題滿分12分)

    一個袋子中裝有黃、黑兩色混合在一起的豆子20公斤(兩種豆子的大小相同)。現(xiàn)從中隨機抽取50粒豆子進行發(fā)芽試驗,結果如下:發(fā)芽的黃、黑兩種豆子分別是27粒和16粒,不發(fā)芽的黃、黑兩種豆子分別是3粒和4粒。

   (Ⅰ)估計黃、黑兩種豆子分別有多少公斤,以及整個袋子中豆子的發(fā)芽率;

   (Ⅱ)能不能有90%的把握認為發(fā)芽不發(fā)芽與豆子的顏色有關?

   (Ⅲ)從3粒黃豆和2粒黑豆中任取2粒,求這2粒豆子中黑豆數(shù)X的分布列和期望。

 

 

查看答案和解析>>

(本小題滿分12分)
一個袋子中裝有黃、黑兩色混合在一起的豆子20公斤(兩種豆子的大小相同),F(xiàn)從中隨機抽取50粒豆子進行發(fā)芽試驗,結果如下:發(fā)芽的黃、黑兩種豆子分別是27粒和16粒,不發(fā)芽的黃、黑兩種豆子分別是3粒和4粒。
(Ⅰ)估計黃、黑兩種豆子分別有多少公斤,以及整個袋子中豆子的發(fā)芽率;
(Ⅱ)能不能有90%的把握認為發(fā)芽不發(fā)芽與豆子的顏色有關?
(Ⅲ)從3粒黃豆和2粒黑豆中任取2粒,求這2粒豆子中黑豆數(shù)X的分布列和期望。

查看答案和解析>>

 

一、選擇題(每小題5分,共12小題,滿分60分)

2,4,6

二、填空題(每小題4分,共4小題,滿分16分)

13.800    14.    15.625    16.②④

三、解答題(本大題共6小題,滿分74分)

17.解

   (Ⅰ)由題意知

……………………3分

……………………4分

的夾角

……………………6分

(Ⅱ)

……………………9分

有最小值。

的最小值是……………………12分

18.解:

(Ⅰ)設“一次取出3個球得4分”的事件記為A,它表示取出的球中有1個紅球和2個黑球的情況

……………………4分

(Ⅱ)由題意,的可能取值為3、4、5、6。因為是有放回地取球,所以每次取到紅球的概率為……………………6分

的分布列為

3

4

5

6

P

……………………10分

19.解:

連接BD交AC于O,則BD⊥AC,

連接A1O

在△AA1O中,AA1=2,AO=1,

∠A1AO=60°

∴A1O2=AA12+AO2-2AA1?Aocos60°=3

∴AO2+A1O2=A12

∴A1O⊥AO,由于平面AA1C1C

平面ABCD,

所以A1O⊥底面ABCD

∴以OB、OC、OA1所在直線為x軸、y軸、z軸建立如圖所示空間直角坐標系,則A(0,-1,0),B(,0,0),C(0,1,0),D(-,0,0),A1(0,0,

……………………2分

(Ⅰ)由于

∴BD⊥AA1……………………4分

  (Ⅱ)由于OB⊥平面AA1C1C

∴平面AA1C1C的法向量

⊥平面AA1D

得到……………………6分

所以二面角D―A1A―C的平面角的余弦值是……………………8分

(Ⅲ)假設在直線CC1上存在點P,使BP//平面DA1C1

……………………9分

得到……………………10分

又因為平面DA1C1

?

即點P在C1C的延長線上且使C1C=CP……………………12分

法二:在A1作A1O⊥AC于點O,由于平面AA1C­1C⊥平面

ABCD,由面面垂直的性質定理知,A1O⊥平面ABCD,

又底面為菱形,所以AC⊥BD

……………………4分

(Ⅱ)在△AA1O中,A1A=2,∠A1AO=60°

∴AO=AA1?cos60°=1

所以O是AC的中點,由于底面ABCD為菱形,所以

O也是BD中點

由(Ⅰ)可知DO⊥平面AA1C

過O作OE⊥AA1于E點,連接OE,則AA1⊥DE

則∠DEO為二面角D―AA1―C的平面角

……………………6分

在菱形ABCD中,AB=2,∠ABC=60°

∴AC=AB=BC=2

∴AO=1,DO=

在Rt△AEO中,OE=OA?sin∠EAO=

DE=

∴cos∠DEO=

∴二面角D―A1A―C的平面角的余弦值是……………………8分

(Ⅲ)存在這樣的點P

連接B1C,因為A1B1ABDC

∴四邊形A1B1CD為平行四邊形。

∴A1D//B1C

在C1C的延長線上取點P,使C1C=CP,連接BP……………………10分

因B­1­BCC1,……………………12分

∴BB1CP

∴四邊形BB1CP為平行四邊形

則BP//B1C

∴BP//A1D

∴BP//平面DA1C1

20.解:

(Ⅰ)

……………………2分

是增函數(shù)

是減函數(shù)……………………4分

……………………6分

(Ⅲ)(i)當時,,由(Ⅰ)知上是增函數(shù),在上是減函數(shù)

……………………7分

又當時,所以的圖象在上有公共點,等價于…………8分

解得…………………9分

(ii)當時,上是增函數(shù),

所以原問題等價于

∴無解………………11分

 

 

 

 

 

 


同步練習冊答案