(3)證明:依題意.得C1.M(.2).={-1.1.2}. 查看更多

 

題目列表(包括答案和解析)

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點A為原點建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得于是,所以

(2) ,設(shè)平面PCD的法向量,

,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設(shè)點E的坐標(biāo)為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設(shè)交點為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

20、集合M是具有以下性質(zhì)的函數(shù)f(x)的全體:對任意的s>0,t>0,都有f(s)>0,f(t)>0,且f(s)+f(t)<f(s+t).
(1)試判斷函數(shù)f1(x)=log2(x+1),f2(x)=2x-1是否屬于M;
(2)證明:對任意的x>0,x+m>0(m∈R,m≠0),m[f(x+m)-f(x)]>0;
(3)證明:對于任意給定的正數(shù)ε>0,總存在正數(shù)δ>0,當(dāng)x∈(0,δ]時,f(x)<ε.

查看答案和解析>>

我們?yōu)榱颂骄亢瘮?shù) f(x)=x+
4
x
,x∈(0,+∞)
的部分性質(zhì),先列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
請你觀察表中y值隨x值變化的特點,完成以下的問題.
首先比較容易的看出來:此函數(shù)在區(qū)間(0,2)上是遞減的;
(1)函數(shù)f(x)=x+
4
x
(x>0)
在區(qū)間
(2,+∞)
(2,+∞)
上遞增.當(dāng)x=
2
2
時,y最小=
4
4

(2)請你根據(jù)上面性質(zhì)作出此函數(shù)的大概圖象;
(3)證明:此函數(shù)在區(qū)間上(0,2)是遞減的.

查看答案和解析>>

(1)已知:a,b,x均是正數(shù),且a>b,求證:1<
a+x
b+x
a
b
;
(2)當(dāng)a,b,x均是正數(shù),且a<b,對真分?jǐn)?shù)
a
b
,給出類似上小題的結(jié)論,并予以證明;
(3)證明:△ABC中,
sinA
sinB+sinC
+
sinB
sinC+sinA
+
sinC
sinA+sinB
<2
(可直接應(yīng)用第(1)、(2)小題結(jié)論)
(4)自己設(shè)計一道可直接應(yīng)用第(1)、(2)小題結(jié)論的不等式證明題.

查看答案和解析>>

(2012•威海一模)已知函數(shù)f(x)=
1
2
x2-ax+(a+1)lnx.
(Ⅰ)若曲線f(x)在點(2,f(2))處的切線與直線2x+3y+1=0垂直,求a的值;
(Ⅱ)若f(x)在區(qū)間(0,+∞)單調(diào)遞增,求a的取值范圍;
(Ⅲ)若-1<a<3,證明:對任意x1,x2∈(0,+∞),x1≠x2,都有
f(x1)-f(x2)
x1-x2
>1成立.

查看答案和解析>>


同步練習(xí)冊答案