1.了解導(dǎo)數(shù)的概念.能利用導(dǎo)數(shù)定義求導(dǎo)數(shù).掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義.理解導(dǎo)函數(shù)的概念.了解曲線的切線的概念.在了解瞬時(shí)速度的基礎(chǔ)上抽象出變化率的概念. 2熟記基本導(dǎo)數(shù)公式(c,x .sin x, cos x, e, a, lnx, logx的導(dǎo)數(shù)).掌握兩個(gè)函數(shù)四則運(yùn)算的求導(dǎo)法則和復(fù)合函數(shù)的求導(dǎo)法則.會(huì)求某些簡(jiǎn)單函數(shù)的導(dǎo)數(shù).利能夠用導(dǎo)數(shù)求單調(diào)區(qū)間.求一個(gè)函數(shù)的最大(小)值的問(wèn)題.掌握導(dǎo)數(shù)的基本應(yīng)用. 查看更多

 

題目列表(包括答案和解析)

A.

【命題意圖】本題考查導(dǎo)數(shù)的概念與幾何意義,中等題.

查看答案和解析>>

導(dǎo)數(shù)的概念

(1)對(duì)于函數(shù)y=f(x),我們把式子稱為函數(shù)f(x)從x1到x2的_________.換言之,如果自變量x在x0處有增量Δx,那么函數(shù)f(x)相應(yīng)地有增量_________;比值_________就叫做函數(shù)y=f(x)在x0到x0Δx之間的_________.

(2)函數(shù)y=f(x)在x=x0處的瞬時(shí)變化率是_________,我們稱它為函數(shù)y=f(x)在x=x0處的_________,記作_________,即(x0)=_________.

(3)函數(shù)f(x)的導(dǎo)數(shù)(x)就是x的一個(gè)函數(shù).我們稱它為f(x)的_________,簡(jiǎn)稱_________,記作_________.

查看答案和解析>>

導(dǎo)數(shù)的概念

(1)對(duì)于函數(shù)y=f(x),如果自變量x在x0處有增數(shù)Δx,那么函數(shù)y相應(yīng)地有增量_________;比值_________就叫做函數(shù)y=f(x)在x0到x0Δx之間的_________.

(2)當(dāng)Δx→0時(shí),有極限,我們就說(shuō)y=f(x)在點(diǎn)x0處_________,并把這個(gè)極限叫做f(x)在點(diǎn)x0處的導(dǎo)數(shù)(或變化率)記作_________或_________,即(x0)=_________=_________,函數(shù)f(x)的導(dǎo)數(shù)(x)就是當(dāng)Δx→0時(shí),函數(shù)的增量Δy與自變量的增量Δx的比的極限,即(x)=_________=_________.

查看答案和解析>>

設(shè)點(diǎn)為平面直角坐標(biāo)系中的一個(gè)動(dòng)點(diǎn)(其中O為坐標(biāo)原點(diǎn)),點(diǎn)P到定點(diǎn)的距離比點(diǎn)P到軸的距離大

(1)求點(diǎn)P的軌跡方程。

(2)若直線與點(diǎn)P的軌跡相交于A、B兩點(diǎn),且,求的值。

(3)設(shè)點(diǎn)P的軌跡是曲線C,點(diǎn)是曲線C上的一點(diǎn),求以Q為切點(diǎn)的曲線C 的切線方程。

【解析】本試題主要考查了軌跡方程的求解,利用直接法設(shè)點(diǎn)表示軌跡方程,并能利用所求的軌跡進(jìn)行直線與圓錐曲線位置關(guān)系的運(yùn)用。以及導(dǎo)數(shù)的幾何意義的運(yùn)用的綜合試題。

 

查看答案和解析>>

設(shè)點(diǎn)為平面直角坐標(biāo)系中的一個(gè)動(dòng)點(diǎn)(其中O為坐標(biāo)原點(diǎn)),點(diǎn)P到定點(diǎn)的距離比點(diǎn)P到軸的距離大

(1)求點(diǎn)P的軌跡方程。

(2)若直線與點(diǎn)P的軌跡相交于A、B兩點(diǎn),且,求的值。

(3)設(shè)點(diǎn)P的軌跡是曲線C,點(diǎn)是曲線C上的一點(diǎn),求以Q為切點(diǎn)的曲線C 的切線方程。

【解析】本試題主要考查了軌跡方程的求解,利用直接法設(shè)點(diǎn)表示軌跡方程,并能利用所求的軌跡進(jìn)行直線與圓錐曲線位置關(guān)系的運(yùn)用。以及導(dǎo)數(shù)的幾何意義的運(yùn)用的綜合試題。

 

查看答案和解析>>


同步練習(xí)冊(cè)答案