如圖為一半徑為2的扇形.在其內(nèi)部隨機(jī)地撒一粒黃豆.則它落在陰影部分的概率為 . 答案 1- 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖所示,ABCD是一塊邊長為7米的正方形鐵皮,其中ATN是一半徑為6米的扇形,已經(jīng)被腐蝕不能使用,其余部分完好可利用.工人師傅想在未被腐蝕部分截下一個有邊落在BC與CD上的長方形鐵皮PQCR,其中P是
TN
上一點(diǎn).設(shè)∠TAP=θ,長方形PQCR的面積為S平方米.
(1)求S關(guān)于θ的函數(shù)解析式;
(2)設(shè)sinθ+cosθ=t,求S關(guān)于t的表達(dá)式以及S的最大值.

查看答案和解析>>

精英家教網(wǎng)如圖邊長為2的正方形花園的一角是以A為中心,1為半徑的扇形水池.現(xiàn)需在其余部分設(shè)計(jì)一個矩形草坪PNCQ,其中P是水池邊上任意一點(diǎn),點(diǎn)N、Q分別在邊BC和CD上,設(shè)∠PAB為θ.
(I)用θ表示矩形草坪PNCQ的面積,并求其最小值;
(II)求點(diǎn)P到邊BC和AB距離之比
PNPM
的最小值.

查看答案和解析>>

精英家教網(wǎng)如圖扇形AOB是一個觀光區(qū)的平面示意圖,其中∠AOB的圓心角為
3
,半徑OA為1Km,為了便于游客觀光休閑,擬在觀光區(qū)內(nèi)鋪設(shè)一條從入口A到出口B的觀光道路,道路由圓弧AC、線段CD及線段BD組成.其中D在線段OB上,且CD∥AO,設(shè)∠AOC=θ,
(1)用θ表示CD的長度,并寫出θ的取值范圍.
(2)當(dāng)θ為何值時,觀光道路最長?

查看答案和解析>>

如圖,現(xiàn)有一個以∠AOB為圓心角、湖岸OA與OB為半徑的扇形湖面AOB.現(xiàn)欲在弧AB上取不同于A,B的點(diǎn)C,用漁網(wǎng)沿著弧AC(弧AC在扇形AOB的弧AB上)、半徑OC和線段CD(其中CD∥OA),在該扇形湖面內(nèi)隔出兩個養(yǎng)殖區(qū)域--養(yǎng)殖區(qū)域Ⅰ和養(yǎng)殖區(qū)域Ⅱ.若OA=1cm,∠AOB=
π3
,∠AOC=θ.
(1)用θ表示CD的長度;
(2)求所需漁網(wǎng)長度(即圖中弧AC、半徑OC和線段CD長度之和)的取值范圍.

查看答案和解析>>

如圖,四邊形ABCD是一個邊長為100米的正方形地皮,其中ATPS是一半徑為90米的扇形小山,其余部分都是平地,P是弧TS上一點(diǎn),現(xiàn)有一位開發(fā)商想在平地上建造一個兩邊落在BC與CD上的長方形停車場PQCR.
(1)若∠PAT=θ,試寫出四邊形RPQC的面積S關(guān)于θ的函數(shù)表達(dá)式,并寫出定義域;
(2)試求停車場的面積最大值.

查看答案和解析>>


同步練習(xí)冊答案