1.判斷和證明數(shù)列是等差數(shù)列常有三種方法: (1)定義法:對于n≥2的任意自然數(shù),驗證為同一常數(shù). (2)通項公式法: ①若 = +(n-1)d= +(n-k)d .則為等差數(shù)列, ②若 .則為等比數(shù)列. (3)中項公式法:驗證中項公式成立. 查看更多

 

題目列表(包括答案和解析)

數(shù)列{an}中,若存在常數(shù)M,?n∈N*,均有|an|≤M,稱數(shù)列{an}是有界數(shù)列;把Ln=
ni=1
|ai+1-ai|(n∈N*)
叫數(shù)列{an}的前n項鄰差和,數(shù)列{Ln}叫數(shù)列{an}的鄰差和數(shù)列.
(1)若數(shù)列{an}滿足,?n∈N*,均有|an+3|+|an-1|≤6恒成立,試證明:{an}是有界數(shù)列;
(2)試判斷公比為q的正項等比數(shù)列{an}的鄰差和數(shù)列{Ln}是否為有界數(shù)列,證明你的結(jié)論;
(3)已知數(shù)列{an}、{bn}的鄰差和{Ln}與{L'n}均為有界數(shù)列,試證明數(shù)列{anbn}的鄰差和數(shù)列{L''n}也是有界數(shù)列.

查看答案和解析>>

定義:若數(shù)列{an}對任意n∈N*,滿足
an+2-an+1
an+1-an
=k
(k為常數(shù)),稱數(shù)列{an}為等差比數(shù)列.
(1)若數(shù)列{an}前n項和Sn滿足Sn=3(an-2),求{an}的通項公式,并判斷該數(shù)列是否為等差比數(shù)列;
(2)若數(shù)列{an}為等差數(shù)列,試判斷{an}是否一定為等差比數(shù)列,并說明理由;
(3)若數(shù)列{an}為等差比數(shù)列,定義中常數(shù)k=2,a2=3,a1=1,數(shù)列{
2n-1
an+1
}
的前n項和為Tn,求證:Tn<3.

查看答案和解析>>

定義:若數(shù)列對任意,滿足為常數(shù)),稱數(shù)列為等差比數(shù)列.

(1)若數(shù)列項和滿足,求的通項公式,并判斷該數(shù)列是否為等差比數(shù)列;

(2)若數(shù)列為等差數(shù)列,試判斷是否一定為等差比數(shù)列,并說明理由;

(3)若數(shù)列為等差比數(shù)列,定義中常數(shù),數(shù)列的前項和為, 求證:.

 

查看答案和解析>>

定義:若數(shù)列對任意,滿足為常數(shù)),稱數(shù)列為等差比數(shù)列.
(1)若數(shù)列項和滿足,求的通項公式,并判斷該數(shù)列是否為等差比數(shù)列;
(2)若數(shù)列為等差數(shù)列,試判斷是否一定為等差比數(shù)列,并說明理由;
(3)若數(shù)列為等差比數(shù)列,定義中常數(shù),數(shù)列的前項和為, 求證:.

查看答案和解析>>

定義:若數(shù)列對任意,滿足為常數(shù)),稱數(shù)列為等差比數(shù)列.
(1)若數(shù)列項和滿足,求的通項公式,并判斷該數(shù)列是否為等差比數(shù)列;
(2)若數(shù)列為等差數(shù)列,試判斷是否一定為等差比數(shù)列,并說明理由;
(3)若數(shù)列為等差比數(shù)列,定義中常數(shù),數(shù)列的前項和為, 求證:.

查看答案和解析>>


同步練習(xí)冊答案