8.球的表面積及體積公式 S球表=4πR2 V球=πR3 ⑴球的體積公式可以這樣來考慮:我們把球面分成若干個(gè)邊是曲線的小“曲邊三角形 ,以球心為頂點(diǎn).以這些小曲邊三角形的頂點(diǎn)為底面三角形的頂點(diǎn).得到若干個(gè)小三棱錐.所有這些小三棱錐的體積和可以看作是球體積的近似值.當(dāng)小三棱錐的個(gè)數(shù)無限增加.且所有這些小三棱錐的底面積無限變小時(shí).小三棱錐的體積和就變成球體積.同時(shí)小三棱錐底面面積的和就變成球面面積,小三棱錐高變成球半徑.由于第n個(gè)小三棱錐的體積=Snhn(Sn為該小三棱錐的底面積,hn為小三棱錐高).所以V球=S球面·R=·4πR2·R=πR3. ⑵球與其它幾何體的切接問題.要仔細(xì)觀察.分析.弄清相關(guān)元素的位置關(guān)系和數(shù)量關(guān)系.選擇最佳角度作出截面.以使空間問題平面化. 查看更多

 

題目列表(包括答案和解析)

請按照題號在各題的答題區(qū)域(黑色線框)內(nèi)作答,超出答題區(qū)域書寫的答案無效。

參考公式:

樣本數(shù)據(jù),,,的標(biāo)準(zhǔn)差

         其中為樣本平均數(shù)

柱體體積公式

   

其中為底面面積,為高

 

錐體體積公式

   

其中為底面面積,為高

球的表面積和體積公式

,

其中為球的半徑

 
 


第Ⅰ卷

一、選擇題:本大題共12小題,每小題5分,滿分60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。

1.已知函數(shù)的定義域?yàn)?sub>,的定義域?yàn)?sub>,則

                空集

2.已知復(fù)數(shù),則它的共軛復(fù)數(shù)等于

                                  

3.設(shè)變量、滿足線性約束條件,則目標(biāo)函數(shù)的最小值為

6               7              8                  23

查看答案和解析>>

已知球心C(1,1,2),球的一條直徑的一個(gè)端點(diǎn)為A(-1,2,2),試求該球的表面積、體積及該直徑的另一個(gè)端點(diǎn)的坐標(biāo)與表示球面的方程.

查看答案和解析>>

已知球心C(1,1,2),球的一條直徑的一個(gè)端點(diǎn)為A(-1,2,2),試求該球的表面積、體積及該直徑的另一個(gè)端點(diǎn)的坐標(biāo)與表示球面的方程.

查看答案和解析>>

已知球心C(1,1,2),球的一條直徑的一個(gè)端點(diǎn)為A(-1,2,2),試求該球的表面積、體積及該直徑的另一個(gè)端點(diǎn)的坐標(biāo)與表示球面的方程.

查看答案和解析>>

已知球心C(1,1,2),球的一條直徑的一個(gè)端點(diǎn)為A(-1,2,2),試求該球的表面積、體積及該直徑的另一個(gè)端點(diǎn)的坐標(biāo)與表示球面的方程.

查看答案和解析>>


同步練習(xí)冊答案