本題等價(jià)于求函數(shù)x=f在時(shí)的最小值.易得 查看更多

 

題目列表(包括答案和解析)

有以下五個(gè)命題①y=sin2x+
9
sin2x
的最小值是6.②已知f(x)=
x-
11
x-
10
,則f(4)<f(3).③函數(shù)f(x)值域?yàn)椋?∞,0],等價(jià)于f(x)≤0恒成立.④函數(shù)y=
1
x-1
在定義域上單調(diào)遞減.⑤若函數(shù)y=f(x)的值域是[1,3],則函數(shù)F(x)=1-f(x+3)的值域是[-5,-3].其中真命題是:

查看答案和解析>>

(本題滿分14分)已知函數(shù)f (x)=lnx,g(x)=ex

 (I)若函數(shù)φ (x) = f (x)-,求函數(shù)φ (x)的單調(diào)區(qū)間;

 (Ⅱ)設(shè)直線l為函數(shù) y=f (x) 的圖象上一點(diǎn)A(x0,f (x0))處的切線.證明:在區(qū)間(1,+∞)上存在唯一的x0,使得直線l與曲線y=g(x)相切.

注:e為自然對(duì)數(shù)的底數(shù).

 

查看答案和解析>>

有以下五個(gè)命題①的最小值是6.②已知,則f(4)<f(3).③函數(shù)f(x)值域?yàn)椋?∞,0],等價(jià)于f(x)≤0恒成立.④函數(shù)在定義域上單調(diào)遞減.⑤若函數(shù)y=f(x)的值域是[1,3],則函數(shù)F(x)=1-f(x+3)的值域是[-5,-3].其中真命題是:   

查看答案和解析>>

已知函數(shù)f(x)=lnx,g(x)=x2+bx(a≠0).

(1)若a=-2時(shí),函數(shù)h(x)=f(x)-g(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;

(2)在(1)的結(jié)論下,設(shè)函數(shù)φ(x)=e2x+bex,x∈[0,ln2],求函數(shù)φ(x)的最小值;

(3)設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于P、Q,過線段PQ的中點(diǎn)R作x軸的垂線分別交C1、C2于點(diǎn)M、N,問是否存在點(diǎn)R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知函數(shù)f(x)=lnx,g(x)=ax2+bx(a≠0).

(Ⅰ)若a=-2時(shí),函數(shù)h(x)=f(x)-g(x)在其定義域是增函數(shù),求b的取值范圍;

(Ⅱ)在(Ⅰ)的結(jié)論下,設(shè)函數(shù)(x)=e2x+bex,x∈[0,ln2],求函數(shù)(x)的最小值;

(Ⅲ)設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于點(diǎn)P、Q,過線段PQ的中點(diǎn)R作x軸的垂線分別交C1、C2于點(diǎn)M、N,問是否存在點(diǎn)R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案