3. 分析:在化簡前應(yīng)先復(fù)習(xí)“ 以及絕對值的概念. 解:(1)原式= = = (2)原式= = = 說明:在三角式的化簡或恒等變形中.正確處理算術(shù)根和絕對值問題是個難點.這是由于算術(shù)根和絕對值的概念在初中代數(shù)階段是一個不易理解和掌握的基本概念.現(xiàn)在又以三角式的形式出現(xiàn).就更增加了它的復(fù)雜性和抽象性.所以形成新的難點.為處理好這個問題.要先復(fù)習(xí)算術(shù)根和絕對值的定義. 查看更多

 

題目列表(包括答案和解析)

雞兔同籠

  你以前聽說過“雞兔同籠”問題嗎?這個問題,是我國古代著名趣題之一.大約在1 500年前,《孫子算經(jīng)》中就記載了這個有趣的問題.書中是這樣敘述的:“今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?”這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數(shù),有35個頭;從下面數(shù),有94只腳.求籠中各有幾只雞和兔?

  你會解答這個問題嗎?你想知道《孫子算經(jīng)》中是如何解答這個問題的嗎?

  解答思路是這樣的:假如砍去每只雞、每只兔一半的腳,則每只雞就變成了“獨角雞”,每只兔就變成了“雙腳兔”.這樣,(1)雞和兔的腳的總數(shù)就由94只變成了47只;(2)如果籠子里有一只兔子,則腳的總數(shù)就比頭的總數(shù)多1.因此,腳的總只數(shù)47與總頭數(shù)35的差,就是兔子的只數(shù),即47-35=12(只).顯然,雞的只數(shù)就是35-12=23(只)了.

  這一思路新穎而奇特,其“砍足法”也令古今中外數(shù)學(xué)家贊嘆不已.這種思維方法叫化歸法.

  化歸法就是在解決問題時,先不對問題采取直接的分析,而是將題中的條件或問題進(jìn)行變形,使之轉(zhuǎn)化,直到最終把它歸成某個已經(jīng)解決的問題.

1.古代《孫子算經(jīng)》就有這么好的解法——化歸法,這一思路新穎而奇特,其“砍足法”也令古今中外數(shù)學(xué)家贊嘆不已.對此,談?wù)勀愕目捶ǎ?/P>

2.我國古代數(shù)學(xué)研究一直處于領(lǐng)先地位,現(xiàn)在有所落后了,對此,我們不應(yīng)只感嘆古人的偉大,而更應(yīng)該樹立為科學(xué)而奮斗終身的信心,同學(xué)們,你們準(zhǔn)備好了嗎?

查看答案和解析>>

請先閱讀:
設(shè)可導(dǎo)函數(shù) f(x) 滿足f(-x)=-f(x)(x∈R).
在等式f(-x)=-f(x) 的兩邊對x求導(dǎo),
得(f(-x))′=(-f(x))′,
由求導(dǎo)法則,得f′(-x)•(-1)=-f′(x),
化簡得等式f′(-x)=f′(x).
(Ⅰ)利用上述想法(或其他方法),結(jié)合等式(1+x)n=
C
0
n
+
C
1
n
x+
C
2
n
x2+…+
C
n
n
xn
(x∈R,整數(shù)n≥2),證明:n[(1+x)n-1-1]=2
C
2
n
x+3
C
3
n
x2+4
C
4
n
x3+…+n
C
n
n
xn-1
;
(Ⅱ)當(dāng)整數(shù)n≥3時,求
C
1
n
-2
C
2
n
+3
C
3
n
-…+(-1)n-1n
C
n
n
的值;
(Ⅲ)當(dāng)整數(shù)n≥3時,證明:2
C
2
n
-3•2
C
3
n
+4•3
C
4
n
+…+(-1)n-2n(n-1)
C
n
n
=0

查看答案和解析>>

已知函數(shù)f(x)=cos2x+2sinxcosx-sin2x.
(Ⅰ)將f(x)化簡成f(x)=Asin(ωx+φ)(其中A>0,ω>0)的形式;
(Ⅱ)利用“五點法”畫出函數(shù)f(x)在一個周期內(nèi)的簡圖.(要求先列表,然后在答題卷給出的平面直角坐標(biāo)系內(nèi)畫圖)

查看答案和解析>>

請先閱讀:
在等式cos2x=2cos2x-1(x∈R)的兩邊求導(dǎo),得:(cos2x)′=(2cos2x-1)′,由求導(dǎo)法則,得(-sin2x)•2=4cosx•(-sinx),化簡得等式:sin2x=2cosx•sinx.
(1)利用上題的想法(或其他方法),結(jié)合等式(1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn(x∈R,正整數(shù)n≥2),證明:n[(1+x)n-1-1]=
n
k=2
k
C
k
n
xk-1

(2)對于正整數(shù)n≥3,求證:
(i)
n
k=1
(-1)kk
C
k
n
=0
;
(ii)
n
k=1
(-1)kk2
C
k
n
=0
;
(iii)
n
k=1
1
k+1
C
k
n
=
2n+1-1
n+1

查看答案和解析>>

已知函數(shù)f(x)=cos
x
4
•cos(
π
2
-
x
4
)•cos(π-
x
2
)

(1)將函數(shù)f(x)的解析式化簡;
(2)若將函數(shù)f(x)在(0,+∞)的所有極值點從小到大排成一數(shù)列記為{an},求數(shù)列{an}的通項公式;
(3)在(2)的條件下,若令bn=
1
anan+1
,求數(shù)列{bn}前n項和Tn

查看答案和解析>>


同步練習(xí)冊答案