解:(1)∵ ∴ 當(dāng)時(shí). 即 ∵ ∴ 即數(shù)列是等比數(shù)列 ∵ ∴ 即 ∴ ∵ 點(diǎn)在直線上 ∴ ∴ 即數(shù)列是等差數(shù)列.又 ∴ (2) ① ∴ ② ①-②得 即 ∴ ∵ 即 于是 又由于當(dāng)時(shí). 當(dāng)時(shí). 故滿足條件最大的正整數(shù)n為4 . 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)

       為了解甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽出取14件和5件,測(cè)量產(chǎn)品中的微量元素x,y的含量(單位:毫克).下表是乙廠的5件產(chǎn)品的測(cè)量數(shù)據(jù):

編號(hào)

1

2

3

4

5

x

169

178

166

175

180

y

75

80

77

70

81

(1)已知甲廠生產(chǎn)的產(chǎn)品共有98件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;

(2)當(dāng)產(chǎn)品中的微量元素x,y滿足x≥175,且y≥75時(shí),該產(chǎn)品為優(yōu)等品。用上述樣本數(shù)據(jù)估計(jì)乙廠生產(chǎn)的優(yōu)等品的數(shù)量;

(3)從乙廠抽出的上述5件產(chǎn)品中,隨機(jī)抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列極其均值(即數(shù)學(xué)期望)。

查看答案和解析>>

(本小題滿分14分)               

已知函數(shù)的圖像經(jīng)過點(diǎn).

(1)求該函數(shù)的解析式;

(2)數(shù)列中,若,為數(shù)列的前項(xiàng)和,且滿足,

證明數(shù)列成等差數(shù)列,并求數(shù)列的通項(xiàng)公式;

(3)另有一新數(shù)列,若將數(shù)列中的所有項(xiàng)按每一行比上一行多一項(xiàng)的規(guī)則排成

如下數(shù)表:

 

    

      

記表中的第一列數(shù)構(gòu)成的數(shù)列即為數(shù)列,上表中,若從第三行起,第一行中的數(shù)按從左到右的順序均構(gòu)成等比數(shù)列,且公比為同一個(gè)正數(shù).當(dāng)

時(shí),求上表中第行所有項(xiàng)的和.

 

查看答案和解析>>

(本小題滿分14分)               
已知函數(shù)的圖像經(jīng)過點(diǎn).
(1)求該函數(shù)的解析式;
(2)數(shù)列中,若為數(shù)列的前項(xiàng)和,且滿足,
證明數(shù)列成等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(3)另有一新數(shù)列,若將數(shù)列中的所有項(xiàng)按每一行比上一行多一項(xiàng)的規(guī)則排成
如下數(shù)表:


 
   
     
記表中的第一列數(shù)構(gòu)成的數(shù)列即為數(shù)列,上表中,若從第三行起,第一行中的數(shù)按從左到右的順序均構(gòu)成等比數(shù)列,且公比為同一個(gè)正數(shù).當(dāng)
時(shí),求上表中第行所有項(xiàng)的和.

查看答案和解析>>

(本小題滿分14分)               
已知函數(shù)的圖像經(jīng)過點(diǎn).
(1)求該函數(shù)的解析式;
(2)數(shù)列中,若,為數(shù)列的前項(xiàng)和,且滿足,
證明數(shù)列成等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(3)另有一新數(shù)列,若將數(shù)列中的所有項(xiàng)按每一行比上一行多一項(xiàng)的規(guī)則排成
如下數(shù)表:

 
   
     
記表中的第一列數(shù)構(gòu)成的數(shù)列即為數(shù)列,上表中,若從第三行起,第一行中的數(shù)按從左到右的順序均構(gòu)成等比數(shù)列,且公比為同一個(gè)正數(shù).當(dāng)
時(shí),求上表中第行所有項(xiàng)的和.

查看答案和解析>>

已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)若不等式對(duì)任意恒成立,試猜想出實(shí)數(shù)的最小值,并證明.

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問中,利用設(shè)數(shù)列公差為,

由題意可知,即,解得d,得到通項(xiàng)公式,第二問中,不等式等價(jià)于,利用當(dāng)時(shí),;當(dāng)時(shí),;而,所以猜想,的最小值為然后加以證明即可。

解:(1)設(shè)數(shù)列公差為,由題意可知,即,

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等價(jià)于,

當(dāng)時(shí),;當(dāng)時(shí),;

,所以猜想,的最小值為.     …………8分

下證不等式對(duì)任意恒成立.

方法一:數(shù)學(xué)歸納法.

當(dāng)時(shí),,成立.

假設(shè)當(dāng)時(shí),不等式成立,

當(dāng)時(shí),, …………10分

只要證  ,只要證  ,

只要證  ,只要證  ,

只要證  ,顯然成立.所以,對(duì)任意,不等式恒成立.…14分

方法二:?jiǎn)握{(diào)性證明.

要證 

只要證  ,  

設(shè)數(shù)列的通項(xiàng)公式,        …………10分

,    …………12分

所以對(duì),都有,可知數(shù)列為單調(diào)遞減數(shù)列.

,所以恒成立,

的最小值為

 

查看答案和解析>>


同步練習(xí)冊(cè)答案