能用垂徑定理.圓心角.弧.弦之間關(guān)系定理.圓周角定理及推論.弧長(zhǎng)公式等進(jìn)行簡(jiǎn)單的運(yùn)算和推理,會(huì)通過(guò)作圖的方法理解確定圓的條件. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)在直徑為50cm的圓中,弦AB為40cm,弦CD為48cm,且AB∥CD,求AB與CD之間距離.
解:如圖所示,過(guò)O作OM⊥AB,
∵AB∥CD,∴ON⊥CD.
在Rt△BMO中,BO=25cm.
由垂徑定理得BM=
1
2
AB=
1
2
×40=20cm,
∴OM=
OB2-BM2
=
252-202
=15cm.
同理可求ON=
OC2-CN2
=
252-242
=7cm,
所以MN=OM-ON=15-7=8cm.
以上解答有無(wú)漏解,漏了什么解,請(qǐng)補(bǔ)上.

查看答案和解析>>

27、小明學(xué)習(xí)了垂徑定理,做了下面的探究,請(qǐng)根據(jù)題目要求幫小明完成探究.
(1)更換定理的題設(shè)和結(jié)論可以得到許多真命題.如圖1,在⊙0中,C是劣弧AB的中點(diǎn),直線CD⊥AB于點(diǎn)E,則AE=BE.請(qǐng)證明此結(jié)論;
(2)從圓上任意一點(diǎn)出發(fā)的兩條弦所組成的折線,成為該圓的一條折弦.如圖2,PA,PB組成⊙0的一條折弦.C是劣弧AB的中點(diǎn),直線CD⊥PA于點(diǎn)E,則AE=PE+PB.可以通過(guò)延長(zhǎng)DB、AP相交于點(diǎn)F,再連接AD證明結(jié)論成立.請(qǐng)寫出證明過(guò)程;
(3)如圖3,PA.PB組成⊙0的一條折弦,若C是優(yōu)弧AB的中點(diǎn),直線CD⊥PA于點(diǎn)E,則AE,PE與PB之間存在怎樣的數(shù)量關(guān)系?寫出結(jié)論,不必證明.

查看答案和解析>>

小明學(xué)習(xí)了垂徑定理,做了下面的探究,請(qǐng)根據(jù)題目要求幫小明完成探究.
(1)更換定理的題設(shè)和結(jié)論可以得到許多真命題.如圖1,在⊙0中,C是劣弧AB的中點(diǎn),直線CD⊥AB于點(diǎn)E,則AE=BE.請(qǐng)證明此結(jié)論;
(2)從圓上任意一點(diǎn)出發(fā)的兩條弦所組成的折線,成為該圓的一條折弦.如圖2,PA,PB組成⊙0的一條折弦.C是劣弧AB的中點(diǎn),直線CD⊥PA于點(diǎn)E,則AE=PE+PB.可以通過(guò)延長(zhǎng)DB、AP相交于點(diǎn)F,再連接AD證明結(jié)論成立.請(qǐng)寫出證明過(guò)程;
(3)如圖3,PA.PB組成⊙0的一條折弦,若C是優(yōu)弧AB的中點(diǎn),直線CD⊥PA于點(diǎn)E,則AE,PE與PB之間存在怎樣的數(shù)量關(guān)系?寫出結(jié)論,不必證明.

查看答案和解析>>

小明學(xué)習(xí)了垂徑定理,做了下面的探究,請(qǐng)根據(jù)題目要求幫小明完成探究.
(1)更換定理的題設(shè)和結(jié)論可以得到許多真命題.如圖1,在⊙0中,C是劣弧AB的中點(diǎn),直線CD⊥AB于點(diǎn)E,則AE=BE.請(qǐng)證明此結(jié)論;
(2)從圓上任意一點(diǎn)出發(fā)的兩條弦所組成的折線,成為該圓的一條折弦.如圖2,PA,PB組成⊙0的一條折弦.C是劣弧AB的中點(diǎn),直線CD⊥PA于點(diǎn)E,則AE=PE+PB.可以通過(guò)延長(zhǎng)DB、AP相交于點(diǎn)F,再連接AD證明結(jié)論成立.請(qǐng)寫出證明過(guò)程;
(3)如圖3,PA.PB組成⊙0的一條折弦,若C是優(yōu)弧AB的中點(diǎn),直線CD⊥PA于點(diǎn)E,則AE,PE與PB之間存在怎樣的數(shù)量關(guān)系?寫出結(jié)論,不必證明.

查看答案和解析>>

在直徑為50cm的圓中,弦AB為40cm,弦CD為48cm,且AB∥CD,求AB與CD之間距離.
解:如圖所示,過(guò)O作OM⊥AB,
∵AB∥CD,∴ON⊥CD.
在Rt△BMO中,BO=25cm.
由垂徑定理得BM=數(shù)學(xué)公式AB=數(shù)學(xué)公式×40=20cm,
∴OM=數(shù)學(xué)公式=15cm.
同理可求ON=數(shù)學(xué)公式=7cm,
所以MN=OM-ON=15-7=8cm.
以上解答有無(wú)漏解,漏了什么解,請(qǐng)補(bǔ)上.

查看答案和解析>>


同步練習(xí)冊(cè)答案