⒈ 增函數(shù)與減函數(shù) 定義:對于函數(shù)的定義域I內(nèi)某個區(qū)間上的任意兩個自變量的值.⑴若當(dāng)<時.都有<,則說在這個區(qū)間上是增函數(shù),⑵若當(dāng)<時.都有>,則說在這個區(qū)間上是減函數(shù). 說明:函數(shù)是增函數(shù)還是減函數(shù).是對定義域內(nèi)某個區(qū)間而言的.有的函數(shù)在一些區(qū)間上是增函數(shù).而在另一些區(qū)間上不是增函數(shù).例如函數(shù)(圖1).當(dāng)∈[0,+)時是增函數(shù).當(dāng)∈(-,0)時是減函數(shù). ⒉ 單調(diào)性與單調(diào)區(qū)間 若函數(shù)y=f(x)在某個區(qū)間是增函數(shù)或減函數(shù).則就說函數(shù)在這一區(qū)間具有單調(diào)性.這一區(qū)間叫做函數(shù)的單調(diào)區(qū)間.此時也說函數(shù)是這一區(qū)間上的單調(diào)函數(shù). 在單調(diào)區(qū)間上.增函數(shù)的圖象是上升的.減函數(shù)的圖象是下降的. 說明:⑴函數(shù)的單調(diào)區(qū)間是其定義域的子集, ⑵應(yīng)是該區(qū)間內(nèi)任意的兩個實數(shù).忽略需要任意取值這個條件.就不能保證函數(shù)是增函數(shù).例如.圖5中.在那樣的特定位置上.雖然使得>.但顯然此圖象表示的函數(shù)不是一個單調(diào)函數(shù), ⑶除了嚴(yán)格單調(diào)函數(shù)外.還有不嚴(yán)格單調(diào)函數(shù).它的定義類似上述的定義.只要將上述定義中的“<或>, 改為“ 或, 即可, ⑷定義的內(nèi)涵與外延: 內(nèi)涵是用自變量的大小變化來刻劃函數(shù)值的變化情況, 外延①一般規(guī)律:自變量的變化與函數(shù)值的變化一致時是單調(diào)遞增.自變量的變化與函數(shù)值的變化相對時是單調(diào)遞減. ②幾何特征:在自變量取值區(qū)間上.若單調(diào)函數(shù)的圖象上升.則為增函數(shù).圖象下降則為減函數(shù). 查看更多

 

題目列表(包括答案和解析)

設(shè)f(x)是定義在[0,1]上的函數(shù),若存在x*∈(0,1),使得f(x)在[0,x*]上單調(diào)遞增,在[x*,1]上單調(diào)遞減,則稱f(x)為[0,1]上的單峰函數(shù),x*為峰點,包含峰點的區(qū)間為含峰區(qū)間.對任意的[0,1]上的單峰函數(shù)f(x),下面研究縮短其含峰區(qū)間長度的方法.

  (I)證明:對任意的∈(O,1),,若f()≥f(),則(0,)為含峰區(qū)間:若f()f(),則為含峰區(qū)間:

  (II)對給定的r(0<r<0.5),證明:存在∈(0,1),滿足,使得由(I)所確定的含峰區(qū)間的長度不大于0.5+r:

  (III)選取∈(O,1),,由(I)可確定含峰區(qū)間為,在所得的含峰區(qū)間內(nèi)選取,由類似地可確定一個新的含峰區(qū)間,在第一次確定的含峰區(qū)間為(0,)的情況下,試確定的值,滿足兩兩之差的絕對值不小于0.02,且使得新的含峰區(qū)間的長度縮短到0. 34(區(qū)間長度等于區(qū)間的右端點與左端點之差)

 

查看答案和解析>>

設(shè)f(x)是定義在[0,1]上的函數(shù),若存在x*∈(0,1),使得f(x)在[0,x*]上單調(diào)遞增,在[x*,1]上單調(diào)遞減,則稱f(x)為[0,1]上的單峰函數(shù),x*為峰點,包含峰點的區(qū)間為含峰區(qū)間.對任意的[0,1]上的單峰函數(shù)f(x),下面研究縮短其含峰區(qū)間長度的方法.
(I)證明:對任意的∈(O,1),,若f()≥f(),則(0,)為含峰區(qū)間:若f()f(),則為含峰區(qū)間:
(II)對給定的r(0<r<0.5),證明:存在∈(0,1),滿足,使得由(I)所確定的含峰區(qū)間的長度不大于0.5+r:
(III)選取∈(O,1),,由(I)可確定含峰區(qū)間為,在所得的含峰區(qū)間內(nèi)選取,由類似地可確定一個新的含峰區(qū)間,在第一次確定的含峰區(qū)間為(0,)的情況下,試確定的值,滿足兩兩之差的絕對值不小于0.02,且使得新的含峰區(qū)間的長度縮短到0. 34(區(qū)間長度等于區(qū)間的右端點與左端點之差)

查看答案和解析>>

下面四個命題:
①奇函數(shù)的圖象一定過原點;
②函數(shù)y=
1-x2
|x+2|-2
是奇函數(shù);
③奇函數(shù)f(x)在[a,b]上為增函數(shù),則函數(shù)f(x)在[-b,-a]上為減函數(shù);
④定義在R上的函數(shù)y=f(x),則函數(shù)y=f(x-1)與y=f(1-x)的圖象關(guān)于直線x=1對稱;
其中正確命題的序號是
②④
②④
(把所有正確命題的序號都填上).

查看答案和解析>>

(20)設(shè)f(x)是定義在[0, 1]上的函數(shù),若存在x*∈(0,1),使得f(x)在[0, x*]上單調(diào)遞增,在[x*,1]上單調(diào)遞減,則稱f(x)為[0, 1]上的單峰函數(shù),x*為峰點,包含峰點的區(qū)間為含峰區(qū)間.

    對任意的[0,1]上的單峰函數(shù)f(x),下面研究縮短其含峰區(qū)間長度的方法.

(I)證明:對任意的x1,x2∈(0,1),x1x2,若f(x1)≥f(x2),則(0,x2)為含峰區(qū)間;若f(x1)≤f(x2),則(x1,1)為含峰區(qū)間;

(II)對給定的r(0<r<0.5),證明:存在x1,x2∈(0,1),滿足x2x1≥2r,使得由(I)所確定的含峰區(qū)間的長度不大于 0.5+r;

(III)選取x1,x2∈(0, 1),x1x2,由(I)可確定含峰區(qū)間為(0,x2)或(x1,1),在所得的含峰區(qū)間內(nèi)選取x3,由x3x1x3x2類似地可確定一個新的含峰區(qū)間.在第一次確定的含峰區(qū)間為(0,x2)的情況下,試確定x1,x2x3的值,滿足兩兩之差的絕對值不小于0.02,且使得新的含峰區(qū)間的長度縮短到0.34.

(區(qū)間長度等于區(qū)間的右端點與左端點之差)

查看答案和解析>>

設(shè)f(x)是定義在[0,1]上的函數(shù),若存在x*∈(0,1),使得f(x)在[0,x*]上單調(diào)遞增,在[x*,1]上單調(diào)遞減,則稱f(x)為[0,1]上的單峰函數(shù),x*為峰點,包含峰點的區(qū)間為含峰區(qū)間.對任意的[0,1]上的單峰函數(shù)f(x),下面研究縮短其含峰區(qū)間長度的方法:

(1)證明:對任意的x1,x2∈(0,1),x1<x2,若f(x1)≥f(x2),則(0,x2)為含峰區(qū)間;若f(x1)≤f(x2),則(x1,1)為含峰區(qū)間;

(2)對給定的r(0<r<0.5),證明存在x1,x2∈(0,1),滿足x2-x1≥2r,使得由(1)所確定的含峰區(qū)間的長度不大于0.5+r;

(3)選取x1,x2∈(0,1),x1<x2,由(1)可確定含峰區(qū)間為(0,x2)或(x1,1),在所得的含峰區(qū)間內(nèi)選取x3,由x3與x1或x3與x2類似地可確定一個新的含峰區(qū)間.在第一次確定的含峰區(qū)間為(0,x2)的情況下,試確定x1,x2,x3的值,滿足兩兩之差的絕對值不小于0.02,且使得新的含峰區(qū)間的長度縮短到0.34.

(區(qū)間長度等于區(qū)間的右端點與左端點之差)

查看答案和解析>>


同步練習(xí)冊答案