(A) (B) (C) (D) 查看更多

 

題目列表(包括答案和解析)

       A.                   B.                    C.                    D.

查看答案和解析>>

a,b,c,d∈R,m=,則m與n的大小關(guān)系是(    )

A.m<n          B.m>n          C.m≤n          D.m≥n

查看答案和解析>>

a,b,c,d∈R+,則(a+b+c+d)(+++)的最小值為__________.

查看答案和解析>>

a,b,c,d∈R+,則(a+b+c+d)(+++)的最小值為__________.

查看答案和解析>>

a,b,c,d∈R+,則(a+b+c+d)(+++)的最小值為__________.

查看答案和解析>>

一.選擇題(每小題5分,共60分)

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

C

B

D

D

B

D

A

C

C

A

A

二.填空題(每小題4分,共16分)

13.     14.    15.     16.  -  

三、解答題:(本大題共6個小題,共74分.解答應(yīng)寫出文字說明,證明過程或演算步驟).

17、(本小題滿分12分)

解:由得:

(3分)

因為所以   所以  (6分)

由正弦定理得.      (8分)  從而由余弦定理及得:

    (12分)

18、(本小題滿分12分)

解:(1)∵這支籃球隊與其他各隊比賽勝場的事件是相互獨立的,

∴首次勝場前已負了兩場的概率P=(1-)×(1-=.   4分

(2)設(shè)A表示這支籃球隊在6場比賽中恰好勝了3場的事件,則P(A)就是6次獨立重復(fù)試驗中恰好發(fā)生3次的概率.∴P(A)=P6(3)=C()3(1-)3=.     8分

(3)設(shè)ξ表示這支籃球隊在6場比賽中勝場數(shù),則ξB(6,).

=6××(1-)=,Eξ=6×=2.

故這支籃球隊在6場比賽中勝場數(shù)的期望是2,方差是.     12分

19、(本小題滿分12分)

解: (4分)

,

  ( 6分)

當(dāng)時,當(dāng)時,,(9分)

當(dāng)時,

當(dāng)時, (11分)

綜上,

文本框: 圖2

所以,為等差數(shù)列.(12分)

20.(本題?分12分)

解 (1)如圖2,將已知條件實現(xiàn)在長方體中,則直線與平面所成的角為,ks5u直線與平面所成角的為.在直角中,有,故=;在直角中,有,

=.               6分

(2)如圖2,作

               

設(shè)二面角的平面角為,則             

得:.                   12分

21、(本小題滿分12分)

解:因為線段的兩端點在拋物線上,故可設(shè),設(shè)線段的中點,則            7分

,

所以:                              11分

所以,線段的中點的軌跡方程為.    12分

22、(本小題滿分14分)

(1)解:f′(x)=3x2-6ax+b,

過P1(x1,y1)的切線方程是y-y1=f′(x1)(x-x1)(x1≠0).

又原點在直線上,所以-(x13-3ax12+bx1)=(-x1)(3x12-6ax1+b),

解得x1=.       4分

(2)解:過Pn(xn,yn)的切線方程是y-yn=f′(xn)(x-xn).

又Pn+1 (xn+1,yn+1)在直線上,

所以(xn+1-xn)2(xn+1+2xn3a)=0.由xn≠xn+1,

解得xn+1+2xn3a=0.        10分

(3)證明:由(2)得xn+1-a=-2(xn-a),

所以數(shù)列{xn-a}是首項為x1-a=,公比為-2的等比數(shù)列.

∴xn=a+?(-2)n-1,

即xn=[1-(-2)n-2]a.

當(dāng)n為正偶數(shù)時,xn<a;當(dāng)n為正奇數(shù)時, xn>a.     14分

 

 

 

 


同步練習(xí)冊答案