16.某靜電場的電場線分布如圖所示.圖中P.Q兩點(diǎn)的電場強(qiáng)度的大小分別為EP和EQ.電勢分別為UP和UQ.則 A.EP>EQ.UP>UQ B.EP>EQ.UP<UQ C.EP<EQ.UP>UQ D.EP<EQ.UP<UQ 查看更多

 

題目列表(包括答案和解析)

在“自選模塊”考試中,某試場的每位同學(xué)都選了一道數(shù)學(xué)題,第一小組選《數(shù)學(xué)史與不等式選講》的有1人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有5人,第二小組選《數(shù)學(xué)史與不等式選講》的有2人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有4人,現(xiàn)從第一、第二兩小組各任選2人分析得分情況.
(Ⅰ)求選出的4 人均為選《矩陣變換和坐標(biāo)系與參數(shù)方程》的概率;
(Ⅱ)設(shè)ξ為選出的4個(gè)人中選《數(shù)學(xué)史與不等式選講》的人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

在“自選模塊”考試中,某試場的每位同學(xué)都選了一道數(shù)學(xué)題,第一小組選《數(shù)學(xué)史與不等式選講》的有1人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有5人,第二小組選《數(shù)學(xué)史與不等式選講》的有2人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有4人,現(xiàn)從第一、第二兩小組各任選2人分析得分情況.

   (Ⅰ)求選出的4 人均為選《矩陣變換和坐標(biāo)系與參數(shù)方程》的概率;

   (Ⅱ)設(shè)為選出的4個(gè)人中選《數(shù)學(xué)史與不等式選講》的人數(shù),求的分布列和

    數(shù)學(xué)期望.

查看答案和解析>>

在“自選模塊”考試中,某試場的每位同學(xué)都選了一道數(shù)學(xué)題,第一小組選《數(shù)學(xué)史與不等式選講》的有1人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有5人,第二小組選《數(shù)學(xué)史與不等式選講》的有2人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有4人,現(xiàn)從第一、第二兩小組各任選2人分析得分情況.
(Ⅰ)求選出的4 人均為選《矩陣變換和坐標(biāo)系與參數(shù)方程》的概率;
(Ⅱ)設(shè)ξ為選出的4個(gè)人中選《數(shù)學(xué)史與不等式選講》的人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

在“自選模塊”考試中,某試場的每位同學(xué)都選了一道數(shù)學(xué)題,第一小組選《數(shù)學(xué)史與不等式選講》的有1人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有5人,第二小組選《數(shù)學(xué)史與不等式選講》的有2人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有4人,現(xiàn)從第一、第二兩小組各任選2人分析得分情況.
(Ⅰ)求選出的4 人均為選《矩陣變換和坐標(biāo)系與參數(shù)方程》的概率;
(Ⅱ)設(shè)ξ為選出的4個(gè)人中選《數(shù)學(xué)史與不等式選講》的人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

某職業(yè)聯(lián)賽的總決賽在甲、乙兩隊(duì)之間角逐,采用七場四勝制,即有一隊(duì)勝四場,則此隊(duì)獲勝,且比賽結(jié)束.在每場比賽中,甲隊(duì)獲勝的概率是
2
3
,乙隊(duì)獲勝的概率是
1
3
,根據(jù)以往資料統(tǒng)計(jì),每場比賽組織者可獲門票收入為30萬元,兩隊(duì)決出勝負(fù)后,問:
(Ⅰ)組織者在總決賽中獲門票收入為120萬元的概率是多少?
(Ⅱ)設(shè)ξ為組織者在總決賽中獲得的門票收入數(shù),求ξ的分布列.

查看答案和解析>>


同步練習(xí)冊答案