正確理解二項式定理.準確地寫出二項式的展開式. 查看更多

 

題目列表(包括答案和解析)

在二項式定理這節(jié)教材中有這樣一個性質(zhì):Cn0+Cn1+Cn2+Cn3+…Cnn=2n,n∈N
(1)計算1•C30+2•C31+3•C32+4•C33的值方法如下:
設S=1•C30+2•C31+3•C32+4•C33又S=4•C33+3•C32+2•C31+1•C30
相加得2S=5•C30+5•C31+5•C32+5•C33即2S=5•23
所以2S=5•22=20利用類似方法求值:1•C20+2•C21+3•C22,1•C40+2•C41+3•C42+4•C43+5•C44
(2)將(1)的情況推廣到一般的結論,并給予證明
(3)設Sn是首項為a1,公比為q的等比數(shù)列{an}的前n項的和,求S1Cn0+S2Cn1+S3Cn2+S4Cn3+…+Sn+1Cnn,n∈N.

查看答案和解析>>

10、用二項式定理計算9.985,精確到1的近似值為( 。

查看答案和解析>>

(1)以正方體的頂點為頂點,可以確定多少個四棱錐?
(2)黑暗中從3雙尺碼不同的鞋子中任意摸出3只,求摸出3只中有配成一雙(事件A)的概率.
(3)利用二項式定理求1432013被12除所得的余數(shù).

查看答案和解析>>

在學習二項式定理時,我們知道楊輝三角中的數(shù)具有兩個性質(zhì):①每一行中的二項式系數(shù)是“對稱”的,即第1項與最后一項的二項式系數(shù)相等,第2項與倒數(shù)第2項的二項式系數(shù)相等,…;②圖中每行兩端都是1,而且除1以外的每一個數(shù)都等于它肩上兩個數(shù)的和.我們也知道,性質(zhì)①對應于組合數(shù)的一個性質(zhì):cnm=Cnn-m
(1)試寫出性質(zhì)②所對應的組合數(shù)的另一個性質(zhì);
(2)請利用組合數(shù)的計算公式對(1)中組合數(shù)的另一個性質(zhì)作出證明.

查看答案和解析>>

我們知道,對一個量用兩種方法分別算一次,由結果相同可以構造等式,這是一種非常有用的思想方法--“算兩次”(G.Fubini原理),如小學有列方程解應用題,中學有等積法求高…
請結合二項式定理,利用等式(1+x)n•(1+x)n=(1+x)2n(n∈N*
證明:
(1)
n
r=0
(
C
r
n
)2=
C
n
2n
;  
(2)
m
r=0
(
C
r
n
C
m-r
n
)=
C
m
2n

查看答案和解析>>


同步練習冊答案