題目列表(包括答案和解析)
設(shè)函數(shù)f(x)定義在(0,+∞)上,f(1)=0,導(dǎo)函數(shù)
(Ⅰ)求g(x)的單調(diào)區(qū)間和最小值;
(Ⅱ)討論g(x)與的大小關(guān)系;
(Ⅲ)是否存在x0>0,使得|g(x)-g(x0)|<對任意成立?若存在,求出x0的取值范圍;若不存在,請說明理由.
已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.
(1)求f(x)的解析式;
(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中設(shè)切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依題意
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)設(shè)切點為(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)
又切線過點A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
則g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.
∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2
畫出草圖知,當(dāng)-6<m<2時,m=-2x3+6x2-6有三解,
所以m的取值范圍是(-6,2).
已知函數(shù)f(x)=x3+ax2-bx+1(x∈R,a,b為實數(shù))有極值,且在x=1處的切線與直線x-y+1=0平行.
(1)求實數(shù)a的取值范圍;
(2)是否存在實數(shù)a,使得函數(shù)f(x)的極小值為1,若存在,求出實數(shù)a的值;若不存在,請說明理由;
(3)設(shè)a=,f(x)的導(dǎo)數(shù)為(x),令g(x)=-3,x∈(0,∞)
求證:gn(x)-xn-≥2n-2(n∈N*)
設(shè)二次函數(shù)f(x)=mx2+nx+t的圖像過原點,g(x)=ax3+bx-3(x>0),f(x),g(x)的導(dǎo)函數(shù)為(x),(x),且(x)=0,(-1)=-2,f(1)=g(1),(1)=(1).
(1)求函數(shù)f(x),g(x)的解析式;
(2)求f(x)=f(x)-g(x)的極小值;
(3)是否存在實常數(shù)k和m,使得f(x)≥kx+m和g(x)≤kx+m?若存在,求出k和m的值;若不存在,說明理由.
記函數(shù)fn(x)=a·xn-1(a∈R,n∈N*)的導(dǎo)函數(shù)為f′n(x),已知f′3(2)=12.
(1)求a的值;
(2)設(shè)函數(shù)gn(x)=fn(x)-n2ln x,試問:是否存在正整數(shù)n使得函數(shù)gn(x)有且只有一個零點?若存在,請求出所有n的值;若不存在,請說明理由;
(3)若實數(shù)x0和m(m>0且m≠1)滿足=,試比較x0與m的大小,并加以證明.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com