109.證明直線與直線的平行的思考途徑 (1)轉(zhuǎn)化為判定共面二直線無交點(diǎn), (2)轉(zhuǎn)化為二直線同與第三條直線平行, (3)轉(zhuǎn)化為線面平行, (4)轉(zhuǎn)化為線面垂直, (5)轉(zhuǎn)化為面面平行. 查看更多

 

題目列表(包括答案和解析)

(2013•湖北)如圖,某地質(zhì)隊(duì)自水平地面A,B,C三處垂直向地下鉆探,自A點(diǎn)向下鉆到A1處發(fā)現(xiàn)礦藏,再繼續(xù)下鉆到A2處后下面已無礦,從而得到在A處正下方的礦層厚度為A1A2=d1.同樣可得在B,C處正下方的礦層厚度分別為B1B2=d2,C1C2=d3,且d1<d2<d3.過AB,AC的中點(diǎn)M,N且與直線AA2平行的平面截多面體A1B1C1-A2B2C2所得的截面DEFG為該多面體的一個(gè)中截面,其面積記為S
(Ⅰ)證明:中截面DEFG是梯形;
(Ⅱ)在△ABC中,記BC=a,BC邊上的高為h,面積為S.在估測(cè)三角形ABC區(qū)域內(nèi)正下方的礦藏儲(chǔ)量(即多面體A1B1C1-A2B2C2的體積V)時(shí),可用近似公式V=S-h來估算.已知V=
13
(d1+d2+d3)S,試判斷V與V的大小關(guān)系,并加以證明.

查看答案和解析>>

精英家教網(wǎng)如圖,已知直線l1:y=2x+m(m<0)與拋物線C1:y=ax2(a>0)和圓C2:x2+(y+1)2=5都相切,F(xiàn)是C1的焦點(diǎn).
(1)求m與a的值;
(2)設(shè)A是C1上的一動(dòng)點(diǎn),以A為切點(diǎn)作拋物線C1的切線l,直線l交y軸于點(diǎn)B,以FA,F(xiàn)B為鄰邊作平行四邊形FAMB,證明:點(diǎn)M在一條定直線上;
(3)在(2)的條件下,記點(diǎn)M所在的定直線為l2,直線l2與y軸交點(diǎn)為N,連接MF交拋物線C1于P,Q兩點(diǎn),求△NPQ的面積S的取值范圍.

查看答案和解析>>

已知曲線C:f(x)=x2,C上的點(diǎn)A0,An的橫坐標(biāo)分別為1和an(n∈N*),且a1=5,數(shù)列{xn}滿足xn+1=t•f(xn-1)+1(t>0且t≠
1
2
,t≠1)
,設(shè)區(qū)間Dn=[1,an](an>1),當(dāng)x∈Dn時(shí),曲線C上存在點(diǎn)Pn(xn,f(xn)),使得點(diǎn)Pn處的切線與直線A0An平行.
(1)證明:{logt(xn-1)+1}是等比數(shù)列;
(2)當(dāng)Dn+1?Dn對(duì)一切n∈N*恒成立時(shí),求t的取值范圍;
(3)記數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)t=
1
4
時(shí),試比較Sn與n+7的大小,并證明你的結(jié)論.

查看答案和解析>>

如圖,四邊形ABEF和四邊形ABCD均是直角梯形,∠FAB=∠DAB=90°,AF=AB=BC=2,AD=1,F(xiàn)A⊥CD.
(Ⅰ)證明:在平面EBC上,一定存在過C的直線l與直線FD平行;
(Ⅱ)求二面角F-CD-A的余弦值.

查看答案和解析>>

已知(如圖)在正三棱柱(底面正三角形,側(cè)棱垂直于底面)ABC-A1B1C1中,若AB=AA1=4,點(diǎn)D是AA1的中點(diǎn),點(diǎn)P是BC1中點(diǎn)
(1)證明DP與平面ABC平行.
(2)是否存在平面ABC上經(jīng)過C點(diǎn)的直線與DB垂直,如果存在請(qǐng)證明;若不存在,請(qǐng)說明理由.
(3)求四棱錐C1-A1B1BD的體積.

查看答案和解析>>


同步練習(xí)冊(cè)答案