題目列表(包括答案和解析)
已知函數(shù),,k為非零實數(shù).
(Ⅰ)設t=k2,若函數(shù)f(x),g(x)在區(qū)間(0,+∞)上單調(diào)性相同,求k的取值范圍;
(Ⅱ)是否存在正實數(shù)k,都能找到t∈[1,2],使得關(guān)于x的方程f(x)=g(x)在[1,5]上有且僅有一個實數(shù)根,且在[-5,-1]上至多有一個實數(shù)根.若存在,請求出所有k的值的集合;若不存在,請說明理由.
【解析】本試題考查了運用導數(shù)來研究函數(shù)的單調(diào)性,并求解參數(shù)的取值范圍。與此同時還能對于方程解的問題,轉(zhuǎn)化為圖像與圖像的交點問題來長處理的數(shù)學思想的運用。
已知a、b、c是互不相等的非零實數(shù).若用反證法證明三個方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一個方程有兩個相異實根.
【解析】本試題主要考查了二次方程根的問題的綜合運用。運用反證法思想進行證明。
先反設,然后推理論證,最后退出矛盾。證明:假設三個方程中都沒有兩個相異實根,
則Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0
相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,
(a-b)2+(b-c)2+(c-a)2≤0.顯然不成立。
證明:假設三個方程中都沒有兩個相異實根,
則Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.
相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,
(a-b)2+(b-c)2+(c-a)2≤0. ①
由題意a、b、c互不相等,∴①式不能成立.
∴假設不成立,即三個方程中至少有一個方程有兩個相異實根.
設函數(shù)在處取得極值,且曲線在點處的切線垂直于直線.
(Ⅰ) 求的值;
(Ⅱ)求曲線和直線所圍成的封閉圖形的面積;
(Ⅲ)設函數(shù),若方程有三個不相等的實根,求的取值范圍.
【解析】本試題主要考查了導數(shù)的運用。利用導數(shù)求解曲邊梯形的面積,以及求解函數(shù)與方程的根的問題的綜合運用。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com