題目列表(包括答案和解析)
(本小題滿分14分)
已知橢圓C:,左焦點(diǎn),且離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線與橢圓C交于不同的兩點(diǎn)(不是左、右頂點(diǎn)),且以為直徑的圓經(jīng)過橢圓C的右頂點(diǎn)A. 求證:直線過定點(diǎn),并求出定點(diǎn)的坐標(biāo).
(本小題滿分14分)
已知橢圓C:,左焦點(diǎn),且離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線與橢圓C交于不同的兩點(diǎn)(不是左、右頂點(diǎn)),且以為直徑的圓經(jīng)過橢圓C的右頂點(diǎn)A. 求證:直線過定點(diǎn),并求出定點(diǎn)的坐標(biāo).
(本小題滿分14分)設(shè)b>0,橢圓方程為,拋物線方程為.如圖4所示,過點(diǎn)F(0,b+2)作x軸的平行線,與拋物線在
第一象限的交點(diǎn)為G.已知拋物線在點(diǎn)G的切線經(jīng)
過橢圓的右焦點(diǎn).
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)A,B分別是橢圓長軸的左、右端點(diǎn),試探究在
拋物線上是否存在點(diǎn)P,使得△ABP為直角三角形?
若存在,請指出共有幾個這樣的點(diǎn)?并說明理由
(不必具體求出這些點(diǎn)的坐標(biāo)).
本小題滿分14分)
已知橢圓的左、右焦點(diǎn)分別為F1、F2,若以F2為圓心,b-c為半徑作圓F2,過橢圓上一點(diǎn)P作此圓的切線,切點(diǎn)為T,且的最小值不小于。
(1)證明:橢圓上的點(diǎn)到F2的最短距離為;
(2)求橢圓的離心率e的取值范圍;
(3)設(shè)橢圓的短半軸長為1,圓F2與軸的右交點(diǎn)為Q,過點(diǎn)Q作斜率為的直線與橢圓相交于A、B兩點(diǎn),若OA⊥OB,求直線被圓F2截得的弦長S的最大值。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com