21. 如圖所示.為半圓.AB為半圓直徑.O為半圓圓心.且OD⊥AB.Q為線段OD的中點(diǎn).已知|AB|=4.曲線C過Q點(diǎn).動(dòng)點(diǎn)P在曲線C上運(yùn)動(dòng)且保持|PA|+|PB|的值不變. (Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系.求曲線C的方程, (Ⅱ)過D點(diǎn)的直線l與曲線C相交于不同的兩點(diǎn)M.N.問是否存在這樣的直線使 與平行.若平行,求出直線的方程, 若不平行,請(qǐng)說明理由. 高@考3資%源**網(wǎng) 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)
古代印度婆羅門教寺廟內(nèi)的僧侶們?cè)?jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設(shè)有n)個(gè)圓盤依其半徑大小,大的在下,小的在上套在A柱上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動(dòng)一個(gè),而且任何時(shí)候不允許將大盤套在小盤上面,假定有三根柱子A、B、C可供使用.

現(xiàn)用an表示將n個(gè)圓盤全部從A柱上移到C柱上所至少需要移動(dòng)的次數(shù),回答下列問題:
(1)   寫出a1,a2,a3,并求出an;
(2)   記,求和);
(其中表示所有的積的和)
(3)   證明:

查看答案和解析>>

本小題滿分12分)

古代印度婆羅門教寺廟內(nèi)的僧侶們?cè)?jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設(shè)有個(gè)圓盤依其半徑大小,大的在下,小的在上套在A桿上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動(dòng)一個(gè),而且任何不允許將大盤套在小盤上面,假定有三柱子A,B,C可供使用。

現(xiàn)用表示將n個(gè)圓盤全部從A柱上移到C上所至少需要移動(dòng)的次數(shù),回答下列問題:

   (1)寫出,并求出

   (2)記,求和;

       (其中表示所有的積的和)

   (3)證明:

 

查看答案和解析>>

1.    (本小題滿分12分)

古代印度婆羅門教寺廟內(nèi)的僧侶們?cè)?jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設(shè)有n)個(gè)圓盤依其半徑大小,大的在下,小的在上套在A柱上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動(dòng)一個(gè),而且任何時(shí)候不允許將大盤套在小盤上面,假定有三根柱子A、B、C可供使用.

現(xiàn)用an表示將n個(gè)圓盤全部從A柱上移到C柱上所至少需要移動(dòng)的次數(shù),回答下列問題:

(1)    寫出a1,a2,a3,并求出an;

(2)    記,求和);

(其中表示所有的積的和)

(3)    證明:

 

查看答案和解析>>

(本小題滿分12分)
古代印度婆羅門教寺廟內(nèi)的僧侶們?cè)?jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設(shè)有n)個(gè)圓盤依其半徑大小,大的在下,小的在上套在A柱上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動(dòng)一個(gè),而且任何時(shí)候不允許將大盤套在小盤上面,假定有三根柱子A、B、C可供使用.

現(xiàn)用an表示將n個(gè)圓盤全部從A柱上移到C柱上所至少需要移動(dòng)的次數(shù),回答下列問題:
(1)   寫出a1,a2a3,并求出an;
(2)   記,求和);
(其中表示所有的積的和)
(3)   證明:

查看答案和解析>>

本小題滿分12分)
古代印度婆羅門教寺廟內(nèi)的僧侶們?cè)?jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設(shè)有個(gè)圓盤依其半徑大小,大的在下,小的在上套在A桿上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動(dòng)一個(gè),而且任何不允許將大盤套在小盤上面,假定有三柱子A,B,C可供使用。

現(xiàn)用表示將n個(gè)圓盤全部從A柱上移到C上所至少需要移動(dòng)的次數(shù),回答下列問題:
(1)寫出,并求出
(2)記,求和;
(其中表示所有的積的和)
(3)證明:

查看答案和解析>>


同步練習(xí)冊(cè)答案