3.在1200的二面角 內.有一點P到面α.β的距離分別是6和9 .則點P到棱l的距離等于 ( ) A.3 B. C. 2 D. 12 [填空題] 查看更多

 

題目列表(包括答案和解析)

下面四個計算題中,結果正確的是
①②③
①②③
.(填序號)
①若|
a
|=2,|
b
|=3
,且
a
b
的夾角為600,則|
a
-
b
|=
7
;
②棱長為2正方體ABCD-A1B1C1D1中,點A到平面BDD1B1的距離為d,則d=
2
;
③棱長都是1的平行六面體ABCD-A1B1C1D1中,∠BAD=∠BAA1=∠DAA1=600,則對角線的長AC1=
6

④在1200的二面角α-AB-β中AC?α,BD?β,AB⊥AC,AB⊥BD,AB=AC=BD=1,則點C與D的距離CD=
2

查看答案和解析>>

在二面角α-l-β中,點A∈α,AC⊥l,C為垂足,點B∈β,BD⊥l,D為垂足,若AB=AC=2,BD=CD=1,則二面角α-l-β的大小等于( 。

查看答案和解析>>

如圖,在四棱錐E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=1200

(I)求證:平面ADE⊥平面ABE ;

(II)求二面角A—EB—D的大小的余弦值.

 

查看答案和解析>>

 二面角的棱上有A、B兩點,直線AC、BD分別在這個二面角的兩個半平面內,且都垂直于AB.已知AB =4,AC=6,BD = 8,CD=2,則該二面角的大小為   (    )

     A.1500       B.450      C.600       D.1200

 

查看答案和解析>>

(本小題滿分14分)如圖,在四棱錐E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,

AB=BC=CE=2CD=2,∠BCE=1200,F(xiàn)為AE中點。

(Ⅰ) 求證:平面ADE⊥平面ABE ;

(Ⅱ) 求二面角A—EB—D的大小的余弦值;

(Ⅲ)求點F到平面BDE的距離。

查看答案和解析>>


同步練習冊答案