題目列表(包括答案和解析)
定義在R上的奇函數(shù)f(x)在[-a,-b](a>b>0)上是減函數(shù)且f(-b)>0,判斷F(x)=[f(x)]2在[b,a]上的單調(diào)性并證明你的結(jié)論.
已知定義在R上的奇函數(shù) f(x)有最小正周期2,且當(dāng)x∈(0,1)時(shí), f(x)=.
(1) 求 f(x)在[-1,1]上的解析式;
(2) 證明: f(x)在(0,1)上是減函數(shù).
函數(shù)y=f(x)是定義在R上的奇函數(shù),且f(2)=0,對(duì)于任意x∈R,都有f(x+4)=f(x)+f(4)恒成立,則f(2012)的值為________.
f(x)是定義在R上的奇函數(shù),且f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),f(x)=x2+x
(1)求函數(shù)f(x)的周期
(2)求函數(shù)f(x)在-1≤x≤0的表達(dá)式
(3)求f(6.5)
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com