題目列表(包括答案和解析)
設(shè)函數(shù)f(x)=lnx,g(x)=ax+,函數(shù)f(x)的圖像與x軸的交點(diǎn)也在函數(shù)g(x)的圖像上,且在此點(diǎn)處f(x)與g(x)有公切線.[來(lái)源:學(xué)?。網(wǎng)]
(Ⅰ)求a、b的值;
(Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來(lái)源:學(xué),科,網(wǎng)Z,X,X,K]
【解析】第一問(wèn)解:因?yàn)?i>f(x)=lnx,g(x)=ax+
則其導(dǎo)數(shù)為
由題意得,
第二問(wèn),由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有
解:因?yàn)?i>f(x)=lnx,g(x)=ax+
則其導(dǎo)數(shù)為
由題意得,
(11)由(I)可知,令。
∵, …………8分
∴是(0,+∞)上的減函數(shù),而F(1)=0, …………9分
∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有
已知函數(shù)f(x)=sin(ωx+φ) (0<φ<π,ω>0)過(guò)點(diǎn),函數(shù)y=f(x)圖象的兩相鄰對(duì)稱(chēng)軸間的距離為.
(1) 求f(x)的解析式;
(2) f(x)的圖象向右平移個(gè)單位后,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)的單調(diào)遞減區(qū)間.
【解析】本試題主要考查了三角函數(shù)的圖像和性質(zhì)的運(yùn)用,第一問(wèn)中利用函數(shù)y=f(x)圖象的兩相鄰對(duì)稱(chēng)軸間的距離為.得,所以
第二問(wèn)中,,
可以得到單調(diào)區(qū)間。
解:(Ⅰ)由題意得,,…………………1分
代入點(diǎn),得…………1分
, ∴
(Ⅱ), 的單調(diào)遞減區(qū)間為,.
若函數(shù)在定義域內(nèi)存在區(qū)間,滿足在上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141332182286905_ST.files/image002.png">,則稱(chēng)這樣的函數(shù)為“優(yōu)美函數(shù)”.
(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說(shuō)明理由;
(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實(shí)數(shù)的取值范圍.
【解析】第一問(wèn)中,利用定義,判定由題意得,由,所以
第二問(wèn)中, 由題意得方程有兩實(shí)根
設(shè)所以關(guān)于m的方程在有兩實(shí)根,
即函數(shù)與函數(shù)的圖像在上有兩個(gè)不同交點(diǎn),從而得到t的范圍。
解(I)由題意得,由,所以 (6分)
(II)由題意得方程有兩實(shí)根
設(shè)所以關(guān)于m的方程在有兩實(shí)根,
即函數(shù)與函數(shù)的圖像在上有兩個(gè)不同交點(diǎn)。
已知函數(shù) R).
(Ⅰ)若 ,求曲線 在點(diǎn) 處的的切線方程;
(Ⅱ)若 對(duì)任意 恒成立,求實(shí)數(shù)a的取值范圍.
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
第一問(wèn)中,利用當(dāng)時(shí),.
因?yàn)榍悬c(diǎn)為(), 則,
所以在點(diǎn)()處的曲線的切線方程為:
第二問(wèn)中,由題意得,即即可。
Ⅰ)當(dāng)時(shí),.
,
因?yàn)榍悬c(diǎn)為(), 則,
所以在點(diǎn)()處的曲線的切線方程為:. ……5分
(Ⅱ)解法一:由題意得,即. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141419057564738_ST.files/image016.png">,所以恒成立,
故在上單調(diào)遞增, ……12分
要使恒成立,則,解得.……15分
解法二: ……7分
(1)當(dāng)時(shí),在上恒成立,
故在上單調(diào)遞增,
即. ……10分
(2)當(dāng)時(shí),令,對(duì)稱(chēng)軸,
則在上單調(diào)遞增,又
① 當(dāng),即時(shí),在上恒成立,
所以在單調(diào)遞增,
即,不合題意,舍去
②當(dāng)時(shí),, 不合題意,舍去 14分
綜上所述:
在△ABC中,內(nèi)角A、B、C所對(duì)邊的邊長(zhǎng)分別是a、b、c,已知c=2,C=.
(Ⅰ)若△ABC的面積等于,求a、b;
(Ⅱ)若,求△ABC的面積.
【解析】第一問(wèn)中利用余弦定理及已知條件得又因?yàn)椤鰽BC的面積等于,所以,得聯(lián)立方程,解方程組得.
第二問(wèn)中。由于即為即.
當(dāng)時(shí), , , , 所以當(dāng)時(shí),得,由正弦定理得,聯(lián)立方程組,解得,得到。
解:(Ⅰ) (Ⅰ)由余弦定理及已知條件得,………1分
又因?yàn)椤鰽BC的面積等于,所以,得,………1分
聯(lián)立方程,解方程組得. ……………2分
(Ⅱ)由題意得,
即. …………2分
當(dāng)時(shí), , , , ……1分
所以 ………………1分
當(dāng)時(shí),得,由正弦定理得,聯(lián)立方程組
,解得,; 所以
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com