1.知識與技能 (1)明確函數(shù)的三種表示方法, (2)會根據(jù)不同實際情境選擇合適的方法表示函數(shù), (3)通過具體實例.了解簡單的分段函數(shù)及應(yīng)用. 查看更多

 

題目列表(包括答案和解析)

為普及高中生安全逃生知識與安全防護(hù)能力,某學(xué)校高一年級舉辦了高中生安全知識與安全逃生能力競賽.該競賽分為預(yù)賽和決賽兩個階段,預(yù)賽為筆試,決賽為技能比賽.先將所有參賽選手參加筆試的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計,制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段) 頻數(shù)(人數(shù)) 頻率
[60,70) 9 x
[70,80) y 0.38
[80,90) 16 0.32
[90,100) z s
合   計 p 1
(Ⅰ)求出上表中的x,y,z,s,p的值;
(Ⅱ)按規(guī)定,預(yù)賽成績不低于90分的選手參加決賽,參加決賽的選手按照抽簽方式?jīng)Q定出場順序.已知高一•二班有甲、乙兩名同學(xué)取得決賽資格.
①求決賽出場的順序中,甲不在第一位、乙不在最后一位的概率;
②記高一•二班在決賽中進(jìn)入前三名的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

為普及高中生安全逃生知識與安全防護(hù)能力,某學(xué)校高一年級舉辦了高中生安全知識與安全逃生能力競賽.該競賽分為預(yù)賽和決賽兩個階段,預(yù)賽為筆試,決賽為技能比賽.先將所有參賽選手參加筆試的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計,制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段) 頻數(shù)(人數(shù)) 頻率
[60,70) 9 x
[70,80) y 0.38
[80,90) 16 0.32
[90,100) z s
合   計 p 1
(Ⅰ)求出上表中的x,y,z,s,p的值;
(Ⅱ)按規(guī)定,預(yù)賽成績不低于90分的選手參加決賽,參加決賽的選手按照抽簽方式?jīng)Q定出場順序.已知高一•二班有甲、乙兩名同學(xué)取得決賽資格.
①求決賽出場的順序中,甲不在第一位、乙不在最后一位的概率;
②記高一•二班在決賽中進(jìn)入前三名的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

(1)利用向量有關(guān)知識與方法證明兩角差的余弦公式:Cα-β:cos(α-β)=cosαcosβ+sinαsinβ;
(2)由Cα-β推導(dǎo)兩角和的正弦公式Sα+β:sin(α+β)=sinαcosβ+cosαsinβ.

查看答案和解析>>

(本題滿分14分).有一塊邊長為4的正方形鋼板,現(xiàn)對其切割、焊接成一個長方體形無蓋容器(切、焊損耗忽略不計).有人應(yīng)用數(shù)學(xué)知識作如下設(shè)計:在鋼板的四個角處各切去一個邊長為的小正方形,剰余部分圍成一個長方體,該長方體的高是小正方形的邊長.

(1)請你求出這種切割、焊接而成的長方體容器的的容積V1(用表示);

(2)經(jīng)過設(shè)計(1)的方法,計算得到當(dāng)時,Vl取最大值,為了材料浪費最少,工人師傅還實踐出了其它焊接方法,請寫出與(1)的焊接方法更佳(使材料浪費最少,容積比Vl大)的設(shè)計方案,并計算利用你的設(shè)計方案所得到的容器的容積。

 

查看答案和解析>>

有時可用函數(shù)

      

述學(xué)習(xí)某學(xué)科知識的掌握程度.其中表示某學(xué)科知識的學(xué)習(xí)次數(shù)(),表示對該學(xué)科知識的掌握程度,正實數(shù)a與學(xué)科知識有關(guān)

(1)證明:當(dāng)x 7時,掌握程度的增長量f(x+1)- f(x)總是下降;

(2)根據(jù)經(jīng)驗,學(xué)科甲、乙、丙對應(yīng)的a的取值區(qū)間分別為(115,121],(121,127]

(127,133].當(dāng)學(xué)習(xí)某學(xué)科知識6次時,掌握程度是85%,請確定相應(yīng)的學(xué)科.

 

查看答案和解析>>


同步練習(xí)冊答案