查看更多

 

題目列表(包括答案和解析)

1、集合A={-1,0,1},B={-2,-1,0},則A∪B=
{-2,-1,0,1}

查看答案和解析>>

2、命題“存在x∈R,使得x2+2x+5=0”的否定是
對(duì)任意x∈R,都有x2+2x+5≠0

查看答案和解析>>

3、在等差數(shù)列{an}中,a2+a5=19,S5=40,則a10
29

查看答案和解析>>

5、函數(shù)y=a2-x+1(a>0,a≠1)的圖象恒過定點(diǎn)P,則點(diǎn)P的坐標(biāo)為
(2,2)

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。

1―5 DABBA    6―10 DDCCB    11―12 AC

二、填空題:本大題共4小題,每小題5分,共20分。

13.    14.    15.    16.②④

三、解答題:本大題共6小題,滿分70分。

17.(本小題滿分10分)

   (I)解:

時(shí),

   ………………2分

   ………………4分

, 

  ………………5分

   (II)解:

18.(本小題滿分12分)

   (I)解:

   (II)解:

由(I)知:

   (III)解:

          1. 19.(本小題滿分12分)

            解法一:

               (I)證明

            如圖,連結(jié)AC,AC交BD于點(diǎn)G,連結(jié)EG。

            ∵ 底面ABCD是正方形,

            ∴ G為AC的中點(diǎn).

            又E為PC的中點(diǎn),

            ∴EG//PA。

            ∵EG平面EDB,PA平面EDB,

            ∴PA//平面EDB   ………………4分

               (II)證明:

            ∵ PD⊥底面ABCD,∴PD⊥BC,PD⊥DC,PD⊥DB

            又∵BC⊥DC,PD∩DC=D,

            ∴BC⊥平面PDC。

            ∴PC是PB在平面PDC內(nèi)的射影。

            ∵PD⊥DC,PD=DC,點(diǎn)E是PC的中點(diǎn),

            ∴DE⊥PC。

            由三垂線定理知,DE⊥PB。

            ∵DE⊥PB,EF⊥PB,DE∩EF=E,

            ∴PB⊥平面EFD。   …………………………8分

               (III)解:

            ∵PB⊥平面EFD,

            ∴PB⊥FD。

            又∵EF⊥PB,F(xiàn)D∩EF=F,

            ∴∠EFD就是二面角C―PB―D的平面角!10分

            ∵PD=DC=BC=2,

            ∴PC=DB=

            ∵PD⊥DB,

            由(II)知:DE⊥PC,DE⊥PB,PC∩PB=P,

            ∴DE⊥平面PBC。

            ∵EF平面PBC,

            ∴DE⊥EF。

            ∴∠EFD=60°。

            故所求二面角C―PB―D的大小為60°。  ………………12分

            解法二:

            如圖,以點(diǎn)D為坐標(biāo)原點(diǎn),DA、DC、DP所在直線分別為x軸、y軸、z軸,

            建立空間直角坐標(biāo)系,得以下各點(diǎn)坐標(biāo):D(0,0,0),A(2,0,0),B(2,2,0),

            C(0,2,0),P(0,0,2)   ………………1分

               (I)證明:

            連結(jié)AC,AC交BD于點(diǎn)G,連結(jié)EG。

            ∵ 底面ABCD是正方形,

            ∴ G為AC的中點(diǎn).G點(diǎn)坐標(biāo)為(1,1,0)。

            <s id="5i22e"></s>

            高考資源網(wǎng)www.ks5u.com

            ∴PA//平面EDB   ………………4分

               (II)證明:

               (III)解:

            ∵PB⊥平面EFD,

            ∴PB⊥FD。

            又∵EF⊥PB,F(xiàn)D∩EF=F,

            ∴∠EFD就是二面角C―PB―D的平面角。………………10分

            ∴∠EFD=60°。

            故所求二面角C―PB―D的大小為60°。  ………………12分

            20.(本小題滿分12分)

               (I)解:

            設(shè) “從甲盒內(nèi)取出的2個(gè)球均為黑球”為事件,“從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件.由于事件相互獨(dú)立,所以取出的4個(gè)球均為黑球的概率為

               ………………2分

            依題設(shè),

            故乙盒內(nèi)紅球的個(gè)數(shù)為2。  ……………………5分

            (II)解: 由(I)知

            ξ的分布列為

            ξ

            0

            1

            2

            3

            P

                                                                 ………………10分

             ………………12分

            21.(本小題滿分12分)

               (I)解:由題意設(shè)雙曲線S的方程為   ………………2分

            c為它的半焦距,

               (II)解:

            22.(本小題滿分12分)

               (I)解:

              

               (III)解:

               (III)解:

             

             

            w.w.w.k.s.5.u.c.o.m

            www.ks5u.com


            同步練習(xí)冊(cè)答案