• 查看更多

     

    題目列表(包括答案和解析)

    1、集合A={-1,0,1},B={-2,-1,0},則A∪B=
    {-2,-1,0,1}

    查看答案和解析>>

    2、命題“存在x∈R,使得x2+2x+5=0”的否定是
    對(duì)任意x∈R,都有x2+2x+5≠0

    查看答案和解析>>

    3、在等差數(shù)列{an}中,a2+a5=19,S5=40,則a10
    29

    查看答案和解析>>

    5、函數(shù)y=a2-x+1(a>0,a≠1)的圖象恒過(guò)定點(diǎn)P,則點(diǎn)P的坐標(biāo)為
    (2,2)

    查看答案和解析>>

    一、選擇題:本大題共12小題,每小題5分,共60分。

    1―5 DABBA    6―10 DDCCB    11―12 AC

    二、填空題:本大題共4小題,每小題5分,共20分。

    13.    14.    15.    16.②④

    三、解答題:本大題共6小題,滿分70分。

    17.(本小題滿分10分)

       (I)解:

    時(shí),

       ………………2分

       ………………4分

    , 

      ………………5分

       (II)解:

    18.(本小題滿分12分)

       (I)解:

       (II)解:

    由(I)知:

       (III)解:

    <code id="ozvtn"></code>

      19.(本小題滿分12分)

      解法一:

         (I)證明

      如圖,連結(jié)AC,AC交BD于點(diǎn)G,連結(jié)EG。

      ∵ 底面ABCD是正方形,

      ∴ G為AC的中點(diǎn).

      又E為PC的中點(diǎn),

      ∴EG//PA。

      ∵EG平面EDB,PA平面EDB,

      ∴PA//平面EDB   ………………4分

         (II)證明:

      ∵ PD⊥底面ABCD,∴PD⊥BC,PD⊥DC,PD⊥DB

      又∵BC⊥DC,PD∩DC=D,

      ∴BC⊥平面PDC。

      ∴PC是PB在平面PDC內(nèi)的射影。

      ∵PD⊥DC,PD=DC,點(diǎn)E是PC的中點(diǎn),

      ∴DE⊥PC。

      由三垂線定理知,DE⊥PB。

      ∵DE⊥PB,EF⊥PB,DE∩EF=E,

      ∴PB⊥平面EFD。   …………………………8分

         (III)解:

      ∵PB⊥平面EFD,

      ∴PB⊥FD。

      又∵EF⊥PB,F(xiàn)D∩EF=F,

      ∴∠EFD就是二面角C―PB―D的平面角!10分

      ∵PD=DC=BC=2,

      ∴PC=DB=

      ∵PD⊥DB,

      由(II)知:DE⊥PC,DE⊥PB,PC∩PB=P,

      ∴DE⊥平面PBC。

      ∵EF平面PBC,

      ∴DE⊥EF。

      ∴∠EFD=60°。

      故所求二面角C―PB―D的大小為60°。  ………………12分

      解法二:

      如圖,以點(diǎn)D為坐標(biāo)原點(diǎn),DA、DC、DP所在直線分別為x軸、y軸、z軸,

      建立空間直角坐標(biāo)系,得以下各點(diǎn)坐標(biāo):D(0,0,0),A(2,0,0),B(2,2,0),

      C(0,2,0),P(0,0,2)   ………………1分

         (I)證明:

      連結(jié)AC,AC交BD于點(diǎn)G,連結(jié)EG。

      ∵ 底面ABCD是正方形,

      ∴ G為AC的中點(diǎn).G點(diǎn)坐標(biāo)為(1,1,0)。

        <big id="ozvtn"><wbr id="ozvtn"><strike id="ozvtn"></strike></wbr></big>
        • 高考資源網(wǎng)www.ks5u.com

          ∴PA//平面EDB   ………………4分

             (II)證明:

             (III)解:

          ∵PB⊥平面EFD,

          ∴PB⊥FD。

          又∵EF⊥PB,F(xiàn)D∩EF=F,

          ∴∠EFD就是二面角C―PB―D的平面角。………………10分

          ∴∠EFD=60°。

          故所求二面角C―PB―D的大小為60°。  ………………12分

          20.(本小題滿分12分)

             (I)解:

          設(shè) “從甲盒內(nèi)取出的2個(gè)球均為黑球”為事件,“從乙盒內(nèi)取出的2個(gè)球均為黑球”為事件.由于事件相互獨(dú)立,所以取出的4個(gè)球均為黑球的概率為

             ………………2分

          依題設(shè),

          故乙盒內(nèi)紅球的個(gè)數(shù)為2。  ……………………5分

          (II)解: 由(I)知

          ξ的分布列為

          ξ

          0

          1

          2

          3

          P

                                                               ………………10分

           ………………12分

          21.(本小題滿分12分)

             (I)解:由題意設(shè)雙曲線S的方程為   ………………2分

          c為它的半焦距,

             (II)解:

          22.(本小題滿分12分)

             (I)解:

            

             (III)解:

             (III)解:

           

           

          w.w.w.k.s.5.u.c.o.m

          www.ks5u.com


          同步練習(xí)冊(cè)答案