(II)當(dāng)以AB為直徑的圓經(jīng)過原點(diǎn)O時.求實(shí)數(shù)k的值. 查看更多

 

題目列表(包括答案和解析)

已知雙曲線S的中心是原點(diǎn)O,離心率為數(shù)學(xué)公式,拋物線y2=2數(shù)學(xué)公式x的焦點(diǎn)是雙曲線S的一個焦點(diǎn),直線l:y=kx+1與雙曲線S交于A、B兩個不同點(diǎn).
(I)求雙曲線S的方程;
(II)當(dāng)以AB為直徑的圓經(jīng)過原點(diǎn)O時,求實(shí)數(shù)k的值.

查看答案和解析>>

已知雙曲線S的中心是原點(diǎn)O,離心率為,拋物線y2=2x的焦點(diǎn)是雙曲線S的一個焦點(diǎn),直線l:y=kx+1與雙曲線S交于A、B兩個不同點(diǎn).
(I)求雙曲線S的方程;
(II)當(dāng)以AB為直徑的圓經(jīng)過原點(diǎn)O時,求實(shí)數(shù)k的值.

查看答案和解析>>

已知雙曲線S的中心是原點(diǎn)O,離心率為
5
,拋物線y2=2
5
x的焦點(diǎn)是雙曲線S的一個焦點(diǎn),直線l:y=kx+1與雙曲線S交于A、B兩個不同點(diǎn).
(I)求雙曲線S的方程;
(II)當(dāng)以AB為直徑的圓經(jīng)過原點(diǎn)O時,求實(shí)數(shù)k的值.

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分。

1―5 DABBA    6―10 DDCCB    11―12 AC

二、填空題:本大題共4小題,每小題5分,共20分。

13.    14.    15.    16.②④

三、解答題:本大題共6小題,滿分70分。

17.(本小題滿分10分)

   (I)解:

時,

   ………………2分

   ………………4分

, 

  ………………5分

   (II)解:

18.(本小題滿分12分)

   (I)解:

   (II)解:

由(I)知:

   (III)解:

19.(本小題滿分12分)

解法一:

   (I)證明

如圖,連結(jié)AC,AC交BD于點(diǎn)G,連結(jié)EG。

∵ 底面ABCD是正方形,

∴ G為AC的中點(diǎn).

又E為PC的中點(diǎn),

∴EG//PA。

∵EG平面EDB,PA平面EDB,

∴PA//平面EDB   ………………4分

   (II)證明:

∵ PD⊥底面ABCD,∴PD⊥BC,PD⊥DC,PD⊥DB

又∵BC⊥DC,PD∩DC=D,

∴BC⊥平面PDC。

∴PC是PB在平面PDC內(nèi)的射影。

∵PD⊥DC,PD=DC,點(diǎn)E是PC的中點(diǎn),

∴DE⊥PC。

由三垂線定理知,DE⊥PB。

∵DE⊥PB,EF⊥PB,DE∩EF=E,

∴PB⊥平面EFD。   …………………………8分

   (III)解:

∵PB⊥平面EFD,

∴PB⊥FD。

又∵EF⊥PB,F(xiàn)D∩EF=F,

∴∠EFD就是二面角C―PB―D的平面角!10分

∵PD=DC=BC=2,

∴PC=DB=

∵PD⊥DB,

由(II)知:DE⊥PC,DE⊥PB,PC∩PB=P,

∴DE⊥平面PBC。

∵EF平面PBC,

∴DE⊥EF。

∴∠EFD=60°。

故所求二面角C―PB―D的大小為60°。  ………………12分

解法二:

如圖,以點(diǎn)D為坐標(biāo)原點(diǎn),DA、DC、DP所在直線分別為x軸、y軸、z軸,

建立空間直角坐標(biāo)系,得以下各點(diǎn)坐標(biāo):D(0,0,0),A(2,0,0),B(2,2,0),

C(0,2,0),P(0,0,2)   ………………1分

   (I)證明:

連結(jié)AC,AC交BD于點(diǎn)G,連結(jié)EG。

∵ 底面ABCD是正方形,

∴ G為AC的中點(diǎn).G點(diǎn)坐標(biāo)為(1,1,0)。

  • <rt id="6dcti"><small id="6dcti"><rt id="6dcti"></rt></small></rt>
  • 高考資源網(wǎng)www.ks5u.com

    ∴PA//平面EDB   ………………4分

       (II)證明:

       (III)解:

    ∵PB⊥平面EFD,

    ∴PB⊥FD。

    又∵EF⊥PB,F(xiàn)D∩EF=F,

    ∴∠EFD就是二面角C―PB―D的平面角!10分

    ∴∠EFD=60°。

    故所求二面角C―PB―D的大小為60°。  ………………12分

    20.(本小題滿分12分)

       (I)解:

    設(shè) “從甲盒內(nèi)取出的2個球均為黑球”為事件,“從乙盒內(nèi)取出的2個球均為黑球”為事件.由于事件相互獨(dú)立,所以取出的4個球均為黑球的概率為

       ………………2分

    依題設(shè)

    故乙盒內(nèi)紅球的個數(shù)為2。  ……………………5分

    (II)解: 由(I)知

    ξ的分布列為

    ξ

    0

    1

    2

    3

    P

                                                         ………………10分

     ………………12分

    21.(本小題滿分12分)

       (I)解:由題意設(shè)雙曲線S的方程為   ………………2分

    c為它的半焦距,

       (II)解:

    22.(本小題滿分12分)

       (I)解:

      

       (III)解:

       (III)解:

     

     

    w.w.w.k.s.5.u.c.o.m

    www.ks5u.com


    同步練習(xí)冊答案