題目列表(包括答案和解析)
某地區(qū)對12歲兒童瞬時記憶能力進(jìn)行調(diào)查.瞬時記憶能力包括聽覺記憶能力與視覺記憶能力.某班學(xué)生共有40人,下表為該班學(xué)生瞬時記憶能力的調(diào)查結(jié)果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學(xué)生為3人.
視覺 [來源:] |
視覺記憶能力 |
||||
偏低 |
中等 |
偏高 |
超常 |
||
聽覺 記憶 能力 |
偏低 |
0 |
7 |
5 |
1 |
中等 |
1 |
8 |
3 |
||
偏高 |
2 |
0 |
1 |
||
超常 |
0 |
2 |
1 |
1 |
由于部分?jǐn)?shù)據(jù)丟失,只知道從這40位學(xué)生中隨機(jī)抽取一個,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為.
(I)試確定、的值;
(II)從40人中任意抽取3人,求其中至少有一位具有聽覺記憶能力或視覺記憶能力超常的學(xué)生的概率;
(III)從40人中任意抽取3人,設(shè)具有聽覺記憶能力或視覺記憶能力偏高或超常的學(xué)生人數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望.
【解析】1)中由表格數(shù)據(jù)可知,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的學(xué)生共有(10+a)人.記“視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上”為事件A,則P(A)=(10+a)/40=2/5,解得a=6.……………2分
所以.b=40-(32+a)=40-38=2答:a的值為6,b的值為2.………………3分
(2)中由表格數(shù)據(jù)可知,具有聽覺記憶能力或視覺記憶能力超常的學(xué)生共有8人.
方法1:記“至少有一位具有聽覺記憶能力或視覺記憶能力超常的學(xué)生”為事件B,
則“沒有一位具有聽覺記憶能力或視覺記憶能力超常的學(xué)生”為事件
(3)中由于從40位學(xué)生中任意抽取3位的結(jié)果數(shù)為,其中具有聽覺記憶能力或視覺記憶能力偏高或超常的學(xué)生共24人,從40位學(xué)生中任意抽取3位,其中恰有k位具有聽覺記憶能力或視覺記憶能力偏高或超常的結(jié)果數(shù)為,………………………7分
所以從40位學(xué)生中任意抽取3位,其中恰有k位具有聽覺記憶能力或視覺記憶能力偏高或超常的概率為,k=0,1,2,3
已知冪函數(shù)滿足。
(1)求實數(shù)k的值,并寫出相應(yīng)的函數(shù)的解析式;
(2)對于(1)中的函數(shù),試判斷是否存在正數(shù)m,使函數(shù),在區(qū)間上的最大值為5。若存在,求出m的值;若不存在,請說明理由。
【解析】本試題主要考查了函數(shù)的解析式的求解和函數(shù)的最值的運(yùn)用。第一問中利用,冪函數(shù)滿足,得到
因為,所以k=0,或k=1,故解析式為
(2)由(1)知,,,因此拋物線開口向下,對稱軸方程為:,結(jié)合二次函數(shù)的對稱軸,和開口求解最大值為5.,得到
(1)對于冪函數(shù)滿足,
因此,解得,………………3分
因為,所以k=0,或k=1,當(dāng)k=0時,,
當(dāng)k=1時,,綜上所述,k的值為0或1,!6分
(2)函數(shù),………………7分
由此要求,因此拋物線開口向下,對稱軸方程為:,
當(dāng)時,,因為在區(qū)間上的最大值為5,
所以,或…………………………………………10分
解得滿足題意
A.①②③ B.①② C.② D.②④
(本小題滿分12分)已知函數(shù)
(I)若函數(shù)在區(qū)間上存在極值,求實數(shù)a的取值范圍;
(II)當(dāng)時,不等式恒成立,求實數(shù)k的取值范圍.
(Ⅲ)求證:解:(1),其定義域為,則令,
則,
當(dāng)時,;當(dāng)時,
在(0,1)上單調(diào)遞增,在上單調(diào)遞減,
即當(dāng)時,函數(shù)取得極大值. (3分)
函數(shù)在區(qū)間上存在極值,
,解得 (4分)
(2)不等式,即
令
(6分)
令,則,
,即在上單調(diào)遞增, (7分)
,從而,故在上單調(diào)遞增, (7分)
(8分)
(3)由(2)知,當(dāng)時,恒成立,即,
令,則, (9分)
(10分)
以上各式相加得,
即,
即
(12分)
。
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.
【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)證明:易得,于是,所以
(2) ,設(shè)平面PCD的法向量,
則,即.不防設(shè),可得.可取平面PAC的法向量于是從而.
所以二面角A-PC-D的正弦值為.
(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.
由,故
所以,,解得,即.
解法二:(1)證明:由,可得,又由,,故.又,所以.
(2)如圖,作于點(diǎn)H,連接DH.由,,可得.
因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,
因此所以二面角的正弦值為.
(3)如圖,因為,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,故
在中,由,,
可得.由余弦定理,,
所以.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com