(C)3 (D)4 查看更多

 

題目列表(包括答案和解析)

(x+4的展開式中系數(shù)為有理數(shù)的項(xiàng)有(    )

A.1項(xiàng)                B.2項(xiàng)              C.3項(xiàng)                D.4項(xiàng)

查看答案和解析>>

(1)y=tanx在定義域上是增函數(shù);
(2)y=sinx在第一、第四象限是增函數(shù);
(3)y=sinx與y=cosx在第二象限都是減函數(shù);
(4)y=sinx在x∈[-
π
2
π
2
]
上是增函數(shù),上述四個(gè)命題中,正確的個(gè)數(shù)是( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

(1)選修4-2:矩陣與變換
已知矩陣M=(
2a
2b
)的兩^E值分別為λ1=-1和λ2=4.
(I)求實(shí)數(shù)的值;
(II )求直線x-2y-3=0在矩陣M所對(duì)應(yīng)的線性變換作用下的像的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn)x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線C的參數(shù)方程為
x=sinα
y=2cos2α-2
,
(a為餓),曲線D的鍵標(biāo)方程為ρsin(θ-
π
4
)=-
3
2
2

(I )將曲線C的參數(shù)方程化為普通方程;
(II)判斷曲線c與曲線D的交點(diǎn)個(gè)數(shù),并說明理由.
(3)選修4-5:不等式選講
已知a,b為正實(shí)數(shù).
(I)求證:
a2
b
+
b2
a
≥a+b;
(II)利用(I)的結(jié)論求函數(shù)y=
(1-x)2
x
+
x2
1-x
(0<x<1)的最小值.

查看答案和解析>>

(1)選修4-2:矩陣與變換
已知二階矩陣M有特征值λ=3及對(duì)應(yīng)的一個(gè)特征向量
e1
=
1
1
,并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成(3,0),求矩陣M.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
過點(diǎn)M(3,4),傾斜角為
π
6
的直線l與圓C:
x=2+5cosθ
y=1+5sinθ
(θ為參數(shù))相交于A、B兩點(diǎn),試確定|MA|•|MB|的值.
(3)選修4-5:不等式選講
已知實(shí)數(shù)a,b,c,d,e滿足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,試確定e的最大值.

查看答案和解析>>

(理)某娛樂中心有如下摸獎(jiǎng)活動(dòng):拿8個(gè)白球和8個(gè)黑球放在一盒中,規(guī)定:凡摸獎(jiǎng)?wù),每人每次交費(fèi)1元,每次從盒中摸出5個(gè)球,中獎(jiǎng)情況為:摸出5個(gè)白球中20元,摸出4個(gè)白球1個(gè)黑球中2元,摸出3個(gè)白球2個(gè)黑球中價(jià)值為0.5元的紀(jì)念品1件,其他情況無任何獎(jiǎng)勵(lì).若有1560人次摸獎(jiǎng),不計(jì)其他支出,用概率估計(jì)該中心收入錢數(shù)為( 。
A、120元B、480元C、980元D、148元

查看答案和解析>>

 

一、選擇題:本大題共12個(gè)小題,每小題5分,共60分.

1-5:DBADC; 6-10:BACDC; 11-12: BC.

二、填空題:本大題共4個(gè)小題,每小題4分,共16分.

13.3; 14.-4; 15.1; 16.

三、解答題:本大題共6個(gè)小題,共74分.解答要寫出文字說明,證明過程或演算步驟.

 

17.解:(Ⅰ)∵l1∥l2,,

,????????????????????????? 3分

,

.??????????????????????? 6分

(Ⅱ)∵,

,∴,當(dāng)且僅當(dāng)時(shí)。ⅲ剑ⅲ??? 8分

,∴,???????????? 10分

,當(dāng)且僅當(dāng)時(shí)。ⅲ剑ⅲ

故△ABC面積取最大值為.?????????????????????? 12分

 

18.解:(Ⅰ)ξ=3表示取出的三個(gè)球中數(shù)字最大者為3.

①三次取球均出現(xiàn)最大數(shù)字為3的概率;??????????? 1分

②三次取球中有2次出現(xiàn)最大數(shù)字3的概率;????? 3分

③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率.????? 5分

∴P(ξ=3)=P1+P2+P3=.??????????????????????? 6分

(Ⅱ)在ξ=k時(shí), 利用(Ⅰ)的原理可知:

(k=1、2、3、4).?? 8分

則ξ的概率分布列為:

ξ

1

2

3

4

P

??????????????????????????????????? 10分

∴ξ的數(shù)學(xué)期望Eξ=1×+2×+3×+4× = .????????? 12分

 

19.(Ⅰ)證明:∵四邊形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等邊三角形,設(shè)O是AA1的中點(diǎn),連接BO,則BO⊥AA1 2分

∵側(cè)面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面積為,知C到AA1的距離為,,∴△AA1C1是等邊三角形,且C1O⊥AA1,又C1O∩BO=O.

∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.??????????????? 4分

(Ⅱ)解:由(Ⅰ)知OA、OC1、OB兩兩垂直,以O(shè)為原點(diǎn),建立如圖空間直角坐標(biāo)系,則,,,,.則,,.??????????????????????????? 5分

設(shè)是平面ABC的一個(gè)法向量,

,則.設(shè)A1到平面ABC的距離為d.

.????????????????????? 8分

(Ⅲ)解:由(Ⅱ)知平面ABC的一個(gè)法向量是,又平面ACC1的一個(gè)法向量.    9分

.????????????????? 11分

∴二面角B-AC-C1的余弦值是.??????????????????? 12分

 

20.解:(Ⅰ),對(duì)稱軸方程為,故函數(shù)在[0,1]上為增函數(shù),∴.???????????????????????? 2分

當(dāng)時(shí),.?????????????????????????? 3分

            ①

       ②

②-①得,即,?????????????? 4分

,∴數(shù)列是以為首項(xiàng),為公比的等比數(shù)列.

,∴.?????????????? 6分

(Ⅱ)∵,∴

???????????????? 7分

可知:當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),

????????????????????? 10分

可知存在正整數(shù)或6,使得對(duì)于任意的正整數(shù)n,都有成立.??? 12分

 

21.解:(Ⅰ)設(shè),,

,,

,

.∵,

,∴,∴.?????????????????? 2分

則N(c,0),M(0,c),所以,

,則,

∴橢圓的方程為.?????????????????????? 4分

(Ⅱ)∵圓O與直線l相切,則,即,????????? 5分

消去y得

∵直線l與橢圓交于兩個(gè)不同點(diǎn),設(shè),

,

,,?????????????????? 7分

,

,.????? 8分

.??????????? 9分

(或).

設(shè),則,,

,則,

時(shí)單調(diào)遞增,????????????????????? 11分

∴S關(guān)于μ在區(qū)間單調(diào)遞增,,,

.???????????????????????????? 12分

(或,

∴S關(guān)于u在區(qū)間單調(diào)遞增,???????????????????? 11分

,.)???????????????? 12分

 

22.解:(Ⅰ)因?yàn)?sub>,,則,   1分

當(dāng)時(shí),;當(dāng)時(shí),

上單調(diào)遞增;在上單調(diào)遞減,

∴函數(shù)處取得極大值.???????????????????? 2分

∵函數(shù)在區(qū)間(其中)上存在極值,

解得.??????????????????????? 3分

(Ⅱ)不等式,即為,???????????? 4分

,∴,?? 5分

,則,∵,∴上遞增,

,從而,故上也單調(diào)遞增,

.??????????????????????????????? 7分

(Ⅲ)由(Ⅱ)知:恒成立,即,??? 8分

,??????????????? 9分

,

,

………

,??????????????????????? 10分

疊加得:

.???????????????????? 12分

,

.???????????????????? 14


同步練習(xí)冊(cè)答案