題目列表(包括答案和解析)
第六部分 振動和波
第一講 基本知識介紹
《振動和波》的競賽考綱和高考要求有很大的不同,必須做一些相對詳細的補充。
一、簡諧運動
1、簡諧運動定義:= -k ①
凡是所受合力和位移滿足①式的質點,均可稱之為諧振子,如彈簧振子、小角度單擺等。
諧振子的加速度:= -
2、簡諧運動的方程
回避高等數學工具,我們可以將簡諧運動看成勻速圓周運動在某一條直線上的投影運動(以下均看在x方向的投影),圓周運動的半徑即為簡諧運動的振幅A 。
依據:x = -mω2Acosθ= -mω2
對于一個給定的勻速圓周運動,m、ω是恒定不變的,可以令:
mω2 = k
這樣,以上兩式就符合了簡諧運動的定義式①。所以,x方向的位移、速度、加速度就是簡諧運動的相關規(guī)律。從圖1不難得出——
位移方程: = Acos(ωt + φ) ②
速度方程: = -ωAsin(ωt +φ) ③
加速度方程:= -ω2A cos(ωt +φ) ④
相關名詞:(ωt +φ)稱相位,φ稱初相。
運動學參量的相互關系:= -ω2
A =
tgφ= -
3、簡諧運動的合成
a、同方向、同頻率振動合成。兩個振動x1 = A1cos(ωt +φ1)和x2 = A2cos(ωt +φ2) 合成,可令合振動x = Acos(ωt +φ) ,由于x = x1 + x2 ,解得
A = ,φ= arctg
顯然,當φ2-φ1 = 2kπ時(k = 0,±1,±2,…),合振幅A最大,當φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),合振幅最小。
b、方向垂直、同頻率振動合成。當質點同時參與兩個垂直的振動x = A1cos(ωt + φ1)和y = A2cos(ωt + φ2)時,這兩個振動方程事實上已經構成了質點在二維空間運動的軌跡參數方程,消去參數t后,得一般形式的軌跡方程為
+-2cos(φ2-φ1) = sin2(φ2-φ1)
顯然,當φ2-φ1 = 2kπ時(k = 0,±1,±2,…),有y = x ,軌跡為直線,合運動仍為簡諧運動;
當φ2-φ1 = (2k + 1)π時(k = 0,±1,±2,…),有+= 1 ,軌跡為橢圓,合運動不再是簡諧運動;
當φ2-φ1取其它值,軌跡將更為復雜,稱“李薩如圖形”,不是簡諧運動。
c、同方向、同振幅、頻率相近的振動合成。令x1 = Acos(ω1t + φ)和x2 = Acos(ω2t + φ) ,由于合運動x = x1 + x2 ,得:x =(2Acost)cos(t +φ)。合運動是振動,但不是簡諧運動,稱為角頻率為的“拍”現(xiàn)象。
4、簡諧運動的周期
由②式得:ω= ,而圓周運動的角速度和簡諧運動的角頻率是一致的,所以
T = 2π ⑤
5、簡諧運動的能量
一個做簡諧運動的振子的能量由動能和勢能構成,即
= mv2 + kx2 = kA2
注意:振子的勢能是由(回復力系數)k和(相對平衡位置位移)x決定的一個抽象的概念,而不是具體地指重力勢能或彈性勢能。當我們計量了振子的抽象勢能后,其它的具體勢能不能再做重復計量。
6、阻尼振動、受迫振動和共振
和高考要求基本相同。
二、機械波
1、波的產生和傳播
產生的過程和條件;傳播的性質,相關參量(決定參量的物理因素)
2、機械波的描述
a、波動圖象。和振動圖象的聯(lián)系
b、波動方程
如果一列簡諧波沿x方向傳播,振源的振動方程為y = Acos(ωt + φ),波的傳播速度為v ,那么在離振源x處一個振動質點的振動方程便是
y = Acos〔ωt + φ - ·2π〕= Acos〔ω(t - )+ φ〕
這個方程展示的是一個復變函數。對任意一個時刻t ,都有一個y(x)的正弦函數,在x-y坐標下可以描繪出一個瞬時波形。所以,稱y = Acos〔ω(t - )+ φ〕為波動方程。
3、波的干涉
a、波的疊加。幾列波在同一介質種傳播時,能獨立的維持它們的各自形態(tài)傳播,在相遇的區(qū)域則遵從矢量疊加(包括位移、速度和加速度的疊加)。
b、波的干涉。兩列波頻率相同、相位差恒定時,在同一介質中的疊加將形成一種特殊形態(tài):振動加強的區(qū)域和振動削弱的區(qū)域穩(wěn)定分布且彼此隔開。
我們可以用波程差的方法來討論干涉的定量規(guī)律。如圖2所示,我們用S1和S2表示兩個波源,P表示空間任意一點。
當振源的振動方向相同時,令振源S1的振動方程為y1 = A1cosωt ,振源S1的振動方程為y2 = A2cosωt ,則在空間P點(距S1為r1 ,距S2為r2),兩振源引起的分振動分別是
y1′= A1cos〔ω(t ? )〕
y2′= A2cos〔ω(t ? )〕
P點便出現(xiàn)兩個頻率相同、初相不同的振動疊加問題(φ1 = ,φ2 = ),且初相差Δφ= (r2 – r1)。根據前面已經做過的討論,有
r2 ? r1 = kλ時(k = 0,±1,±2,…),P點振動加強,振幅為A1 + A2 ;
r2 ? r1 =(2k ? 1)時(k = 0,±1,±2,…),P點振動削弱,振幅為│A1-A2│。
4、波的反射、折射和衍射
知識點和高考要求相同。
5、多普勒效應
當波源或者接受者相對與波的傳播介質運動時,接收者會發(fā)現(xiàn)波的頻率發(fā)生變化。多普勒效應的定量討論可以分為以下三種情況(在討論中注意:波源的發(fā)波頻率f和波相對介質的傳播速度v是恒定不變的)——
a、只有接收者相對介質運動(如圖3所示)
設接收者以速度v1正對靜止的波源運動。
如果接收者靜止在A點,他單位時間接收的波的個數為f ,
當他迎著波源運動時,設其在單位時間到達B點,則= v1 ,、
在從A運動到B的過程中,接收者事實上“提前”多接收到了n個波
n = = =
顯然,在單位時間內,接收者接收到的總的波的數目為:f + n = f ,這就是接收者發(fā)現(xiàn)的頻率f1 。即
f1 = f
顯然,如果v1背離波源運動,只要將上式中的v1代入負值即可。如果v1的方向不是正對S ,只要將v1出正對的分量即可。
b、只有波源相對介質運動(如圖4所示)
設波源以速度v2正對靜止的接收者運動。
如果波源S不動,在單位時間內,接收者在A點應接收f個波,故S到A的距離:= fλ
在單位時間內,S運動至S′,即= v2 。由于波源的運動,事實造成了S到A的f個波被壓縮在了S′到A的空間里,波長將變短,新的波長
λ′= = = =
而每個波在介質中的傳播速度仍為v ,故“被壓縮”的波(A接收到的波)的頻率變?yōu)?/p>
f2 = = f
當v2背離接收者,或有一定夾角的討論,類似a情形。
c、當接收者和波源均相對傳播介質運動
當接收者正對波源以速度v1(相對介質速度)運動,波源也正對接收者以速度v2(相對介質速度)運動,我們的討論可以在b情形的過程上延續(xù)…
f3 = f2 = f
關于速度方向改變的問題,討論類似a情形。
6、聲波
a、樂音和噪音
b、聲音的三要素:音調、響度和音品
c、聲音的共鳴
第二講 重要模型與專題
一、簡諧運動的證明與周期計算
物理情形:如圖5所示,將一粗細均勻、兩邊開口的U型管固定,其中裝有一定量的水銀,汞柱總長為L 。當水銀受到一個初始的擾動后,開始在管中振動。忽略管壁對汞的阻力,試證明汞柱做簡諧運動,并求其周期。
模型分析:對簡諧運動的證明,只要以汞柱為對象,看它的回復力與位移關系是否滿足定義式①,值得注意的是,回復力系指振動方向上的合力(而非整體合力)。當簡諧運動被證明后,回復力系數k就有了,求周期就是順理成章的事。
本題中,可設汞柱兩端偏離平衡位置的瞬時位移為x 、水銀密度為ρ、U型管橫截面積為S ,則次瞬時的回復力
ΣF = ρg2xS = x
由于L、m為固定值,可令: = k ,而且ΣF與x的方向相反,故汞柱做簡諧運動。
周期T = 2π= 2π
答:汞柱的周期為2π 。
學生活動:如圖6所示,兩個相同的柱形滾輪平行、登高、水平放置,繞各自的軸線等角速、反方向地轉動,在滾輪上覆蓋一塊均質的木板。已知兩滾輪軸線的距離為L 、滾輪與木板之間的動摩擦因素為μ、木板的質量為m ,且木板放置時,重心不在兩滾輪的正中央。試證明木板做簡諧運動,并求木板運動的周期。
思路提示:找平衡位置(木板重心在兩滾輪中央處)→ú力矩平衡和Σ?F6= 0結合求兩處彈力→ú求摩擦力合力…
答案:木板運動周期為2π 。
鞏固應用:如圖7所示,三根長度均為L = 2.00m地質量均勻直桿,構成一正三角形框架ABC,C點懸掛在一光滑水平軸上,整個框架可繞轉軸轉動。桿AB是一導軌,一電動松鼠可在導軌上運動。現(xiàn)觀察到松鼠正在導軌上運動,而框架卻靜止不動,試討論松鼠的運動是一種什么樣的運動。
解說:由于框架靜止不動,松鼠在豎直方向必平衡,即:松鼠所受框架支持力等于松鼠重力。設松鼠的質量為m ,即:
N = mg ①
再回到框架,其靜止平衡必滿足框架所受合力矩為零。以C點為轉軸,形成力矩的只有松鼠的壓力N、和松鼠可能加速的靜摩擦力f ,它們合力矩為零,即:
MN = Mf
現(xiàn)考查松鼠在框架上的某個一般位置(如圖7,設它在導軌方向上距C點為x),上式即成:
N·x = f·Lsin60° ②
解①②兩式可得:f = x ,且f的方向水平向左。
根據牛頓第三定律,這個力就是松鼠在導軌方向上的合力。如果我們以C在導軌上的投影點為參考點,x就是松鼠的瞬時位移。再考慮到合力與位移的方向因素,松鼠的合力與位移滿足關系——
= -k
其中k = ,對于這個系統(tǒng)而言,k是固定不變的。
顯然這就是簡諧運動的定義式。
答案:松鼠做簡諧運動。
評說:這是第十三屆物理奧賽預賽試題,問法比較模糊。如果理解為定性求解,以上答案已經足夠。但考慮到原題中還是有定量的條件,所以做進一步的定量運算也是有必要的。譬如,我們可以求出松鼠的運動周期為:T = 2π = 2π = 2.64s 。
二、典型的簡諧運動
1、彈簧振子
物理情形:如圖8所示,用彈性系數為k的輕質彈簧連著一個質量為m的小球,置于傾角為θ
2011年以來我國高速公路發(fā)生多起有關客車相撞的嚴重交通事故,原因之一就是沒有掌握好車距。據經驗豐富的司機總結:在高速公路上,一般可按你的車速來確定與前車距離,如車速為80km/h,就應與前車保持80m的距離,以此類推。現(xiàn)有一輛客車以108km/h速度行駛,一般司機反應時間為0.5s,反應時間內視為勻速運動,剎車時最大加速度為6m/s2,求:
(1)若司機發(fā)現(xiàn)前車因故突然停車,則從司機發(fā)現(xiàn)危險到客車停止運動,該客車通過的最短路程?并說明按經驗,車距保持108m是否可行?
(2)若客車超載,剎車最大加速度減為5m/s2;司機為趕時間而超速,速度達到144km/h;且晚上疲勞駕駛,反應時間增為1.5s,則從司機發(fā)現(xiàn)危險到客車停止運動,客車通過的最短路程?并說明經驗是否可靠?
2011年以來我國高速公路發(fā)生多起有關客車相撞的嚴重交通事故,原因之一就是沒有掌握好車距。據經驗豐富的司機總結:在高速公路上,一般可按你的車速來確定與前車距離,如車速為80km/h,就應與前車保持80m的距離,以此類推,F(xiàn)有一輛客車以108km/h速度行駛,一般司機反應時間為0.5s,反應時間內視為勻速運動,剎車時最大加速度為6m/s2,求:
(1)若司機發(fā)現(xiàn)前車因故突然停車,則從司機發(fā)現(xiàn)危險到客車停止運動,該客車通過的最短路程?并說明按經驗,車距保持108m是否可行?
(2)若客車超載,剎車最大加速度減為5m/s2;司機為趕時間而超速,速度達到144km/h;且晚上疲勞駕駛,反應時間增為1.5s,則從司機發(fā)現(xiàn)危險到客車停止運動,客車通過的最短路程?并說明經驗是否可靠?
2011年以來我國高速公路發(fā)生多起有關客車相撞的嚴重交通事故,原因之一就是沒有掌握好車距。據經驗豐富的司機總結:在高速公路上,一般可按你的車速來確定與前車距離,如車速為80km/h,就應與前車保持80m的距離,以此類推,F(xiàn)有一輛客車以108km/h速度行駛,一般司機反應時間為0.5s,反應時間內視為勻速運動,剎車時最大加速度為6m/s2,求:
(1)若司機發(fā)現(xiàn)前車因故突然停車,則從司機發(fā)現(xiàn)危險到客車停止運動,該客車通過的最短路程?并說明按經驗,車距保持108m是否可行?
(2)若客車超載,剎車最大加速度減為5m/s2;司機為趕時間而超速,速度達到144km/h;且晚上疲勞駕駛,反應時間增為1.5s,則從司機發(fā)現(xiàn)危險到客車停止運動,客車通過的最短路程?并說明經驗是否可靠?
1. B 解析:由圖可知AB、BC、CD的距離分別是
2. C 解析:依題意作出物體的v-t圖象,如圖1所示。圖線下方所圍成的面積表示物體的位移,由幾何知識知圖線②、③不滿足AB=BC。只能是①這種情況。因為斜率表示加速度,所以a1<a2,選項C正確。
3. D 解析:對掛鉤進行受力分析,如圖所示,圖中α、β為A、B繩與豎直方向的夾角,兩繩拉力如圖中FA0、FB0所示;當右側桿向左平移,則α、β均變小,兩繩拉力如圖中FA、FB所示;由圖可知,A、B繩的拉力均變小,AB錯;由于掛鉤受力平衡,兩繩對掛鉤的拉力合力一定與衣服對掛鉤的拉力大小相等、方向相反,因此合力不變,D正確。
4. A 解析:從0到的時間內,磁感應強度從2均勻減小到0,根據楞次定律和右手定則可判斷出感應電流的方法與規(guī)定的方向相反,大小為:;同理,從到T的時間,磁感應強度方向向下,大小均勻增大,感應電流的磁場方向向上,由右手定則可知感應電流的方法與規(guī)定的方向相反,大小為:,故A選項正確。
5. ABC 解析:從F-t圖象上可以看出,在0~t1、t2~t3和t4以后的時間內,彈簧秤對鉤碼的拉力F等于鉤碼的重力10N;t1~t2這段時間內,彈簧秤對鉤碼的拉力F小于鉤碼的重力,鉤碼處于失重狀態(tài);t3~t4這段時間內,彈簧秤對鉤碼的拉力F大于鉤碼的重力,鉤碼處于超重狀態(tài),所以選項ABC正確。
6. B 解析:由圖像的變化快慢可知曲線ab先變化非常快,為斥力圖,cd為引力圖,e點是兩曲線的交點,即分子間引力與斥力相等時,此時分子間距離的數量級為10-
7. C 解析:假設將小球放在彈簧頂端釋放球,這就是一個常見的彈簧振子,由對稱性知,球到達最低點的加速度為,本題中彈簧在最低點時壓縮量比假設的模型大,故答案為C.
8. B 解析:導體桿往復運動,切割磁感線相當于電源,其產生的感應電動勢E=Blv,由于桿相當于彈簧振子,其在O點處的速度最大,產生的感應電動勢最大,因此電路中的電流最大。根據右手定則,電流在P、Q兩處改變方向,此時的電流為零。故選擇B.
9.
解析:由電源的伏安特性曲線讀得電源電動勢為E=1.5V,橫截距表示短路電流I=
a點對應的電源輸出電壓為1.0V,電流為
圖線中的b點所對應的外電阻Rb上的電壓為0.5V,流過其中的電流為
11. 解析:(1)因為電路中需要得到改裝后電壓表量程與電源電動勢兩個未知數,所以需要兩個電路狀態(tài)聯(lián)立方程求解。連接如圖所示。
(2)當當S1與S2均閉合時,由閉合電路的歐姆定律得:
即: ①
當S1閉合,S2斷開時,由閉合電路的歐姆定律得:
,
即: ②
由①②兩式可得:,
則電壓表的量程:
12. 解析:用圖象求解,做出速度時間圖象如圖所示,從圖象看出從B上升到最高點的時間與由最高點落回A的時間之比為1:2,所以從A運動到B的時間與從B上升到最高點的時間之比為1:3,即,又 所以解得
13.
半徑/cm
質量/m0
角速度/rad?s-1
圈數
轉動動能/J
6.4
14.4
25.6
12.8
19.2
25.6
25.6
57.6
102.4
(2)EK = kmω2 r2 (k是比例常數) (3)控制變量法
14. 解析:(1)依題意分析可知:碰撞發(fā)生在第1、2兩次閃光時刻之間,碰撞后B靜止,故碰撞發(fā)生在x=
(2)碰撞后A向左做勻速直線運動,設其速度為,
碰撞到第二次閃光時A向左運動
第一次閃光到發(fā)生碰撞時間為,有:
由以上各式可得:
(3)取向右方向為正方向,碰撞前:A的速度,B的速度
碰撞后:A的速度,B的速度
由動量守恒守恒定律可得:
由以上各式可得::=2:3
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com