22. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)。

(1)證明:

(2)若數(shù)列的通項(xiàng)公式為,求數(shù)列 的前項(xiàng)和;w.w.w.k.s.5.u.c.o.m    

(3)設(shè)數(shù)列滿足:,設(shè),

若(2)中的滿足對任意不小于2的正整數(shù),恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點(diǎn)軸上,點(diǎn)軸的正半軸,點(diǎn)在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當(dāng)點(diǎn)軸上移動時(shí),求動點(diǎn)的軌跡方程;

(Ⅱ)過的直線與軌跡交于、兩點(diǎn),又過、作軌跡的切線,當(dāng),求直線的方程.

查看答案和解析>>

(本小題滿分14分)設(shè)函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關(guān)于的方程在區(qū)間上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時(shí), 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,

(3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設(shè)數(shù)列的前項(xiàng)和為,對任意的正整數(shù),都有成立,記。

(I)求數(shù)列的通項(xiàng)公式;

(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對任意正整數(shù)都有;

(III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

一、選擇題(每小題5分,共60分)

1.A   2.C     3.C   4.D  5.B   6.A   7.D   8.D  9.C   10.B    11.B      12.D

二、填空題(每小題4分,共16分)

   13.    14.3825     15.1      16.0ⅠⅡ

三、解答題

17.解:(Ⅰ)在中,由及余弦定理得

      而,則

      (Ⅱ)由及正弦定理得,

      而,則

      于是,

     由,當(dāng)時(shí),。

18解:(Ⅰ)基本事件共有36個(gè),方程有正根等價(jià)于,即。設(shè)“方程有兩個(gè)正根”為事件,則事件包含的基本事件為共4個(gè),故所求的概率為;

(Ⅱ)試驗(yàn)的全部結(jié)果構(gòu)成區(qū)域,其面積為

設(shè)“方程無實(shí)根”為事件,則構(gòu)成事件的區(qū)域?yàn)?/p>

,其面積為

故所求的概率為

19.解:(Ⅰ)證明:由平面平面,則

   而平面,則,又,則平面,

   又平面,故。

(Ⅱ)在中,過點(diǎn)于點(diǎn),則平面

由已知及(Ⅰ)得

(Ⅲ)在中過點(diǎn)于點(diǎn),在中過點(diǎn)于點(diǎn),連接,則由

  由平面平面,則平面

再由平面,又平面,則平面

  故當(dāng)點(diǎn)為線段上靠近點(diǎn)的一個(gè)三等分點(diǎn)時(shí),平面

  20.解:(Ⅰ)設(shè)等差數(shù)列的公差為,

,

(Ⅱ)由

,故數(shù)列適合條件①

,則當(dāng)時(shí),有最大值20

,故數(shù)列適合條件②.

綜上,故數(shù)列是“特界”數(shù)列。

     21.證明:消去

設(shè)點(diǎn),則,

,,即

化簡得,則

,故

(Ⅱ)解:由

  化簡得

    由,即

故橢圓的長軸長的取值范圍是。

22.解:(Ⅰ),由在區(qū)間上是增函數(shù)

則當(dāng)時(shí),恒有,

在區(qū)間上恒成立。

,解得

(Ⅱ)依題意得

,解得

在區(qū)間上的最大值是。

(Ⅲ)若函數(shù)的圖象與函數(shù)的圖象恰有3個(gè)不同的交點(diǎn),

即方程恰有3個(gè)不等的實(shí)數(shù)根。

是方程的一個(gè)實(shí)數(shù)根,則

方程有兩個(gè)非零實(shí)數(shù)根,

故滿足條件的存在,其取值范圍是

 

 


同步練習(xí)冊答案