(A) (B) (C) (D) 查看更多

 

題目列表(包括答案和解析)

       A.                   B.                    C.                    D.

查看答案和解析>>

a,b,c,d∈R,m=,則m與n的大小關(guān)系是(    )

A.m<n          B.m>n          C.m≤n          D.m≥n

查看答案和解析>>

a,b,c,d∈R+,則(a+b+c+d)(+++)的最小值為__________.

查看答案和解析>>

a,b,c,d∈R+,則(a+b+c+d)(+++)的最小值為__________.

查看答案和解析>>

a,b,c,d∈R+,則(a+b+c+d)(+++)的最小值為__________.

查看答案和解析>>

    2009.3

一、選擇題

(1)B  (2)A  (3)B (4)C (5)B (6)D

(7)D   (8)C  (9)C (10)B (11)A (12)C

二、填空題

  • <kbd id="dhaup"></kbd>
    1. <thead id="dhaup"></thead>

      1,3,5

      三、解答題

      (17)解:(Ⅰ)-             ---------------------------2分

      高三年級人數(shù)為-------------------------3分

      現(xiàn)用分層抽樣的方法在全校抽取48名學生,應在高三年級抽取的人數(shù)為

      (人).                       --------------------------------------6分

      (Ⅱ)設(shè)“高三年級女生比男生多”為事件,高三年級女生、男生數(shù)記為.

      由(Ⅰ)知

      則基本事件空間包含的基本事件有

      共11個,     ------------------------------9分

      事件包含的基本事件有

      共5個   

                      --------------------------------------------------------------11分

      答:高三年級女生比男生多的概率為.  …………………………………………12分

      (18)解:(Ⅰ)  …………2分

      中,由于,

                                              …………3分

      ,

                             

      ,所以,而,因此.…………6分

         (Ⅱ)由,

      由正弦定理得                                …………8分

      ,

      ,由(Ⅰ)知,所以    …………10分

      由余弦弦定理得 ,     …………11分

      ,

                                                     …………12分

      (19)(Ⅰ)證明:∵、分別為、的中點,∴.

           又∵平面平面

      平面                                         …………4分

      (Ⅱ)∵,,∴平面.

      又∵,∴平面.

      平面,∴平面平面.               …………8分

      (Ⅲ)∵平面,∴是三棱錐的高.

      在Rt△中,.

          在Rt△中,.

       ∵,的中點,

      ,

      .        ………………12分

      (20)解:(Ⅰ)依題意得

                                   …………2分

       解得,                                             …………4分

      .       …………6分

         (Ⅱ)由已知得,                  …………8分

                                                               ………………12分

      (21)解:(Ⅰ)

            令=0,得                        ………2分

      因為,所以可得下表:

      0

      +

      0

      -

      極大

                                                                ………………4分

      因此必為最大值,∴,因此,

           ,

          即,∴

       ∴                                       ……………6分

      (Ⅱ)∵,∴等價于, ………8分

       令,則問題就是上恒成立時,求實數(shù)的取值范圍,為此只需,即,                 …………10分

      解得,所以所求實數(shù)的取值范圍是[0,1].            ………………12分

      (22)解:(Ⅰ)由得,,

      所以直線過定點(3,0),即.                       …………………2分

       設(shè)橢圓的方程為,

      ,解得

      所以橢圓的方程為.                    ……………………5分

      (Ⅱ)因為點在橢圓上運動,所以,      ………………6分

      從而圓心到直線的距離

      所以直線與圓恒相交.                             ……………………9分

      又直線被圓截得的弦長

      ,       …………12分

      由于,所以,則,

      即直線被圓截得的弦長的取值范圍是.  …………………14分

       

       

       


      同步練習冊答案