④對(duì)任意且.恒有.其中正確命題的序號(hào)是 . 查看更多

 

題目列表(包括答案和解析)

給出以下4個(gè)命題,其中所有正確結(jié)論的序號(hào)是
(1)(3)
(1)(3)

(1)當(dāng)a為任意實(shí)數(shù)時(shí),直線(a-1)x-y+2a+1=0恒過(guò)定點(diǎn)P則焦點(diǎn)在y軸上且過(guò)點(diǎn)P拋物線的標(biāo)準(zhǔn)方程是x2=
4
3
y.
(2)若直線l1:2kx+(k+1)y+1=0與直線l2:x-ky+2=0垂直,則實(shí)數(shù)k=1;
(3)已知數(shù)列{an}對(duì)于任意p,q∈N*,有ap+aq=ap+q,若a1=
1
9
,則a36=4
(4)對(duì)于一切實(shí)數(shù)x,令[x]大于x最大整數(shù),例如:[3.05]=3,[
5
3
]=1,則函數(shù)f(x)=[x]稱為高斯函數(shù)或取整函數(shù),若an=f(
n
3
)(n∈N*),Sn為數(shù)列{an}的前n項(xiàng)和,則S50=145.

查看答案和解析>>

給出以下4個(gè)命題,其中所有正確結(jié)論的序號(hào)是________

⑴當(dāng)a為任意實(shí)數(shù)時(shí),直線恒過(guò)定點(diǎn),則焦點(diǎn)在y軸上且過(guò)點(diǎn)的拋物線的標(biāo)準(zhǔn)方程是

⑵若直線與直線垂直,則實(shí)數(shù)k=1;

⑶已知數(shù)列對(duì)于任意,有,若,則4

⑷對(duì)于一切實(shí)數(shù),令為不大于的最大整數(shù),例如: ,則函數(shù)稱為高斯函數(shù)或取整函數(shù),若,為數(shù)列的前項(xiàng)和,則145

 

 

查看答案和解析>>

給出以下4個(gè)命題,其中所有正確結(jié)論的序號(hào)是________.

(1)當(dāng)a為任意實(shí)數(shù)時(shí),直線(a-1)x-y+2a+1=0恒過(guò)定點(diǎn)P,則焦點(diǎn)在y軸上且過(guò)點(diǎn)P的拋物線的標(biāo)準(zhǔn)方程是x2y.

(2)若直線l1+2kx+(k+1)y+1=0與直線l2:x-ky+2=0垂直,則實(shí)數(shù)k=1;

(3)已知數(shù)列{an}對(duì)于任意p,q∈N*,有ap+aq=ap+q,若a1,則a36=4

(4)對(duì)于一切實(shí)數(shù)x,令[x]為不大于x的最大整數(shù),例如:[3.05]=3,[]=1,則函數(shù)f(x)=[x]稱為高斯函數(shù)或取整函數(shù),若an=f()(n∈N*),Sn為數(shù)列{an}的前n項(xiàng)和,則S30=145

查看答案和解析>>

給出以下4個(gè)命題,其中所有正確結(jié)論的序號(hào)是________
⑴當(dāng)a為任意實(shí)數(shù)時(shí),直線恒過(guò)定點(diǎn),則焦點(diǎn)在y軸上且過(guò)點(diǎn)的拋物線的標(biāo)準(zhǔn)方程是
⑵若直線與直線垂直,則實(shí)數(shù)k=1;
⑶已知數(shù)列對(duì)于任意,有,若,則4
⑷對(duì)于一切實(shí)數(shù),令為不大于的最大整數(shù),例如: ,則函數(shù)稱為高斯函數(shù)或取整函數(shù),若,為數(shù)列的前項(xiàng)和,則145

查看答案和解析>>

已知函數(shù)是常數(shù)且).對(duì)于下列命題:

①函數(shù)的最小值是;②函數(shù)上是單調(diào)函數(shù);③若上恒成立,則的取值范圍是;④對(duì)任意,恒有

其中正確命題的序號(hào)是                .

查看答案和解析>>

一、BDCBD    ACA CC    

二、                    ①④

三、16.解:(1)  

  即   

為銳角       

 (2)

  又 代入上式得:(當(dāng)且僅當(dāng) 時(shí)等號(hào)成立。)

  (當(dāng)且僅當(dāng) 時(shí)等號(hào)成立。)

17.解:(1)由已知得 解得.設(shè)數(shù)列的公比為,

,可得.又,可知,即,

解得. 由題意得.  .故數(shù)列的通項(xiàng)為

  (2)由于   由(1)得 

=

18.解:(1)因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/f50a5c51324c748886fe905083c95269.zip/68731/湖北省襄陽(yáng)高級(jí)2009年高三年級(jí)檢測(cè)試題(二)--數(shù)學(xué)文科.files/image195.gif" >     圖象的一條對(duì)稱軸是直線 

      <option id="teopt"><address id="teopt"></address></option>
    1. 20081226

      (2)

        由

      分別令,的單調(diào)增區(qū)間是(開閉區(qū)間均可)。

      (3) 列表如下:

      0

      0

      1

      0

      ―1

      0

      19.解:(I)由,則.

      兩式相減得. 即.          

      時(shí),.∴數(shù)列是首項(xiàng)為4,公比為2的等比數(shù)列.

      (Ⅱ)由(I)知.∴            

      ①當(dāng)為偶數(shù)時(shí),

      ∴原不等式可化為,即.故不存在合條件的.      

      ②當(dāng)為奇數(shù)時(shí),.

      原不等式可化為,所以,又m為奇數(shù),所以m=1,3,5……

      20.解:(1)依題意,得

         (2)令

      當(dāng)在此區(qū)間為增函數(shù)

      當(dāng)在此區(qū)間為減函數(shù)

      當(dāng)在此區(qū)間為增函數(shù)

      處取得極大值又

      因此,當(dāng)

      要使得不等式

      所以,存在最小的正整數(shù)k=2007,

      使得不等式恒成立。……7分

        (3)(方法一)

           

      又∵由(2)知為增函數(shù),

      綜上可得

      (方法2)由(2)知,函數(shù)

      上是減函數(shù),在[,1]上是增函數(shù)又

      所以,當(dāng)時(shí),-

      又t>0,

      ,且函數(shù)上是增函數(shù),

       

      綜上可得

      21.解:(1) 

      當(dāng)時(shí),

      函數(shù)有一個(gè)零點(diǎn);當(dāng)時(shí),,函數(shù)有兩個(gè)零點(diǎn)。

         (2)假設(shè)存在,由①知拋物線的對(duì)稱軸為x=-1,∴ 

      由②知對(duì),都有

      又因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/f50a5c51324c748886fe905083c95269.zip/68731/湖北省襄陽(yáng)高級(jí)2009年高三年級(jí)檢測(cè)試題(二)--數(shù)學(xué)文科.files/image514.gif" >恒成立,  ,即,即

      ,

      當(dāng)時(shí),,

      其頂點(diǎn)為(-1,0)滿足條件①,又對(duì),

      都有,滿足條件②!啻嬖,使同時(shí)滿足條件①、②。

         (3)令,則

      ,

      內(nèi)必有一個(gè)實(shí)根。即,

      使成立。

       

       

       

       

       


      同步練習(xí)冊(cè)答案