14 四面體中.是中點.是中點..則直線 與所成的角大小為 查看更多

 

題目列表(包括答案和解析)

如圖,四面體ABCD中,O是BD的中點,CA=CB=CD=BD=2,AB=AD=

(1)求證:平面BCD;(2)求異面直線AB與CD所成角的余弦值(本題14分)

 

查看答案和解析>>

(本題14分)

如圖,四棱錐中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2,E為PD的中點

(1)求異面直線PA與CE所成角的大。

(2)(理)求二面角E-AC-D的大小。

    (文)求三棱錐A-CDE的體積。

查看答案和解析>>

(本題14分)

如圖,四棱錐中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2,E為PD的中點

(1)求異面直線PA與CE所成角的大。

(2)(理)求二面角E-AC-D的大小。

    (文)求三棱錐A-CDE的體積。

 

查看答案和解析>>

(本題14分)
如圖,四棱錐中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2,E為PD的中點
(1)求異面直線PA與CE所成角的大。
(2)(理)求二面角E-AC-D的大小。
(文)求三棱錐A-CDE的體積。

查看答案和解析>>

如圖,四棱錐P-A BCD中,底面ABCD為菱形,BD⊥面PAC,A C=10,PA=6,cos∠PCA=
45
,M是PC的中點.
(Ⅰ)證明PC⊥平面BMD;
(Ⅱ)若三棱錐M-BCD的體積為14,求菱形ABCD的邊長.

查看答案和解析>>

一、1 B     2 D    3 A   4 D     5 C     6 B   

7 A     8  A   9 C   10 D    11 C    12 B

二、13、3     14、      15、-160       16、   

三、17、解: (1)      ……… 3分

     的最小正周期為                     ………………… 5分

(2)  ,    …………………   7分     

               ………………… 10分  

               …………………  11分

 當(dāng)時,函數(shù)的最大值為1,最小值  ……… 12分

18.解:(1)P1=;                          ……… 6分

(2)方法一:P2=

方法二:P2=

方法三:P2=1-            ……… 12分

19、解法一:

(Ⅰ)連結(jié)CBCO,則OB C的中點,連結(jié)DO。

∵在△AC中,O、D均為中點,

ADO…………………………2分

A平面BD,DO平面BD

A∥平面BD。…………………4分

(Ⅱ)設(shè)正三棱柱底面邊長為2,則DC = 1。

    ∵∠DC = 60°,∴C= 。

DEBCE。

∵平面BC⊥平面ABC,

DE⊥平面BC

EFBF,連結(jié)DF,則 DF⊥B

∴∠DFE是二面角D-B-C的平面角………………8分

RtDEC中,DE=

RtBFE中,EF = BE?sin

∴在RtDEF中,tan∠DFE =

∴二面角DBC的大小為arctan………………12分

解法二:以AC的中D為原點建立坐標(biāo)系,如圖,

設(shè)| AD | = 1∵∠DC =60°∴| C| = 。

     則A(1,0,0),B(0,,0),C(-1,0,0),

(1,0), ,

(Ⅰ)連結(jié)CBOC的中點,連結(jié)DO,則     

     O.       =

A平面BD,

A∥平面BD.………………………………………………4分

(Ⅱ)=(-1,0,),

       設(shè)平面BD的法向量為n = ( x , y , z ),則

       即  則有= 0令z = 1

n = (,0,1)          …………………………………8分

       設(shè)平面BC的法向量為m = ( x′ ,y′,z′)

 

    <li id="lmdbf"><input id="lmdbf"></input></li>
      <code id="lmdbf"><tr id="lmdbf"></tr></code>
      <li id="lmdbf"></li>

            令y = -1,解得m = (,-1,0)

            二面角DBC的余弦值為cos<n , m>=

      ∴二面角DBC的大小為arc cos               …………12分

      20、解: 解:

           (1)f(x)=x3+ax2+bx+c,    f′(x)=3x2+2ax+b,

               由f′(-)=a+b=0,   f′(1)=3+2a+b=0,得

               a=-,b=-2,…………  3分

      f′(x)=3x2-x-2=(3x+2)(x-1),函數(shù)f(x)的單調(diào)區(qū)間如下表:

      (-∞,-

      (-,1)

      1

      (1,+∞)

      f′(x)

      +

      0

      0

      +

      f(x)

       

      極大值

      極小值

      所以函數(shù)f(x)的遞增區(qū)間為(-∞,-)與(1,+∞);

      遞減區(qū)間為(-,1).             …………  6分

      (2)f(x)=x3-x2-2x+c  x∈[-1,2],當(dāng)x=-時,f(x)=+c為極大值,

      而f(2)=2+c,則f(2)=2+c為最大值.      …………  8分

      要使f(x)<c2(x∈[-1,2])恒成立,只須c2>f(2)=2+c,

      解得c<-1或c>2.               …………  12分

      21、(I)解:方程的兩個根為,,

      當(dāng)時,,所以;

      當(dāng)時,,,所以

      當(dāng)時,,所以時;

      當(dāng)時,,所以.      …………  4分

      (II)解:

      .                          …………  8分

      (Ⅲ)=                       …………  12分

      22、解: (I)依題意知,點的軌跡是以點為焦點、直線為其相應(yīng)準(zhǔn)線,

      離心率為的橢圓

      設(shè)橢圓的長軸長為2a,短軸長為2b,焦距為2c,

      ,,∴點在x軸上,且,且3

      解之得:,     ∴坐標(biāo)原點為橢圓的對稱中心 

      ∴動點M的軌跡方程為:        …………  4分

      (II)設(shè),設(shè)直線的方程為,代入

                         ………… 5分

      , 

          ………… 6分

      ,,

      ,

       

      解得: (舍)   ∴ 直線EF在X軸上的截距為    …………8分

      (Ⅲ)設(shè),由知, 

      直線的斜率為    ………… 10分

      當(dāng)時,;

      當(dāng)時,,

      時取“=”)或時取“=”),

                   ………… 12分            

      綜上所述                  ………… 14分 

       


      同步練習(xí)冊答案