(II)設點K為點的軌跡與x軸正半軸的交點,直線交點的軌跡于兩點(與點K均不重合),且滿足 求直線EF在X軸上的截距, 查看更多

 

題目列表(包括答案和解析)

    如圖,已知三角形PAQ頂點P-30),點Ay軸上,點Qx軸正半軸上,。

(I)          當點Ay軸上移動時,求動點M的軌跡E的方程;

 

II)設直線與軌跡E交于B、C兩點,點D(1,0),若∠BDC為鈍角,求k的取值范圍。

 

查看答案和解析>>

    如圖,已知三角形PAQ頂點P-3,0),點Ay軸上,點Qx軸正半軸上,。

(I)          當點Ay軸上移動時,求動點M的軌跡E的方程;

 

II)設直線與軌跡E交于B、C兩點,點D(1,0),若∠BDC為鈍角,求k的取值范圍。

 

查看答案和解析>>

精英家教網(wǎng)如圖,在直角坐標系中,O為坐標原點,直線AB⊥x軸與點C,|
OC
|=4
,
CD
=3
DO
,動點M到直線AB的距離是它到點D的距離的2倍.
(I)求點M的軌跡方程
(II)設點K為點M的軌跡與x軸正半軸的交點,直線l交點M的軌跡于E,F(xiàn)兩點(E,F(xiàn)與點K不重合),且滿足
KE
KF
.動點P滿足2
OP
=
OE
+
OF
,求直線KP的斜率的取值范圍.

查看答案和解析>>

如圖,在直角坐標系中,O為坐標原點,直線AB⊥x軸與點C,,動點M到直線AB的距離是它到點D的距離的2倍.
(I)求點M的軌跡方程
(II)設點K為點M的軌跡與x軸正半軸的交點,直線l交點M的軌跡于E,F(xiàn)兩點(E,F(xiàn)與點K不重合),且滿足.動點P滿足,求直線KP的斜率的取值范圍.

查看答案和解析>>

如圖,在直角坐標系中,O為坐標原點,直線AB⊥x軸與點C,,,動點M到直線AB的距離是它到點D的距離的2倍.
(I)求點M的軌跡方程
(II)設點K為點M的軌跡與x軸正半軸的交點,直線l交點M的軌跡于E,F(xiàn)兩點(E,F(xiàn)與點K不重合),且滿足.動點P滿足,求直線KP的斜率的取值范圍.

查看答案和解析>>

一、1 B     2 D    3 A   4 D     5 D     6 B   

7 A     8  A   9 C   10 D    11 B    12 B

   二、13、3      14、-160    15、     16、  

   三、17、解: (1)     …… 3分

     的最小正周期為                        ………………… 5分

(2) ,          …………………  7分     

                        ………………… 10分

                                ………………… 11分

 時,函數(shù)的最大值為1,最小值 ………… 12分

 18、(I)解:設這箱產(chǎn)品被用戶拒絕接收事件為A,被接收為,則由對立事件概率公式

   得:

即這箱產(chǎn)品被用戶拒絕接收的概率為           …………   6分

(II)                

                                   ………… 10分

1

2

3

P

                                                          …………11分

∴ E=                                  …………12分

19、解法一:

(Ⅰ)連結B1CBCO,則OBC的中點,連結DO。

∵在△AC中,O、D均為中點,

ADO   …………………………2分

A平面BD,DO平面BD

A∥平面BD!4分

(Ⅱ)設正三棱柱底面邊長為2,則DC = 1。

    ∵∠DC = 60°,∴C=

DEBCE。

∵平面BC⊥平面ABC

DE⊥平面BC

EFBF,連結DF,則 DF⊥B

∴∠DFE是二面角D-B-C的平面角……………………………………8分

RtDEC中,DE=

RtBFE中,EF = BE?sin

∴在RtDEF中,tan∠DFE =

∴二面角DBC的大小為arctan………………12分

解法二:以AC的中D為原點建立坐標系,如圖,

設| AD | = 1∵∠DC =60°∴| C| =

     則A(1,0,0),B(0,,0),C(-1,0,0),

(1,0),

(Ⅰ)連結CBOC的中點,連結DO,則                  O.       =

A平面BD

A∥平面BD.……………………………………………………………4分

(Ⅱ)=(-1,0,),

       設平面BD的法向量為n = ( x , y , z ),則

       即  則有= 0令z = 1

n = (,0,1)…………………………………………………………8分

       設平面BC的法向量為m = ( x′ ,y′,z′)

 

          令y = -1,解得m = (,-1,0)

          二面角DBC的余弦值為cos<n , m>=

    ∴二面角DBC的大小為arc cos          …………12分

    20、解: 對函數(shù)求導得: ……………2分

    (Ⅰ)當時,                   

    解得

      解得

    所以, 單調增區(qū)間為,,

    單調減區(qū)間為(-1,1)                                    ……………5分

    (Ⅱ) 令,即,解得     ………… 6分

    時,列表得:

     

    x

    1

    +

    0

    0

    +

    極大值

    極小值

    ……………8分

    對于時,因為,所以

    >0                                                    …………   10 分

    對于時,由表可知函數(shù)在時取得最小值

    所以,當時,                              

    由題意,不等式恒成立,

    所以得,解得                          ……………12分

    21、解: (I)依題意知,點的軌跡是以點為焦點、直線為其相應準線,

    離心率為的橢圓

    設橢圓的長軸長為2a,短軸長為2b,焦距為2c,

    ,∴點在x軸上,且,則3,

    解之得:,     

    ∴坐標原點為橢圓的對稱中心 

    ∴動點M的軌跡方程為:                 …………    4分

    (II)設,設直線的方程為(-2〈n〈2),代入

                         ………… 5分

    , 

         …………  6分

    ,K(2,0),,

    ,

     

    解得: (舍)      ∴ 直線EF在X軸上的截距為    …………8分

    (Ⅲ)設,由知, 

    直線的斜率為                …………    10分

    時,;

    時,,

    時取“=”)或時取“=”),

                                    

    綜上所述                         …………  12分  

    22、(I)解:方程的兩個根為,

    時,,所以;

    時,,,所以

    時,,所以時;

    時,,所以.    …………  4分

    (II)解:

    .                        …………  8分

    (III)證明:,

    所以,

    .                       …………  9分

    時,

    ,

                                             …………  11分

    同時,

    .                                    …………  13分

    綜上,當時,.                     …………  14分

     


    同步練習冊答案