解析:本題考查平面向量的概念以及模的運算.由條件||=.而且與向量=的夾角是180°.所以與的方向相反.直接選得B. 查看更多

 

題目列表(包括答案和解析)

因為高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,所以點P為線段AC的中點,所以應該選B。

答案:B。

【命題立意】:本題考查了向量的加法運算和平行四邊形法則,可以借助圖形解答。

查看答案和解析>>

雙曲線高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。的一條漸近線為高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,由方程組高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,消去y,得高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。有唯一解,所以△=高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,

所以高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,高考資源網(wǎng)( www.ks5u.com),中國最大的高考網(wǎng)站,您身邊的高考專家。,故選D. w.w.w.k.s.5.u.c.o.m    

答案:D.

【命題立意】:本題考查了雙曲線的漸近線的方程和離心率的概念,以及直線與拋物線的位置關系,只有一個公共點,則解方程組有唯一解.本題較好地考查了基本概念基本方法和基本技能.

查看答案和解析>>

已知向量),向量,

.

(Ⅰ)求向量; (Ⅱ)若,,求.

【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關系式的運用。

(1)問中∵,∴,…………………1分

,得到三角關系是,結合,解得。

(2)由,解得,,結合二倍角公式,和,代入到兩角和的三角函數(shù)關系式中就可以求解得到。

解析一:(Ⅰ)∵,∴,…………1分

,∴,即   ①  …………2分

 ②   由①②聯(lián)立方程解得,5分

     ……………6分

(Ⅱ)∵,,  …………7分

,               ………8分

又∵,          ………9分

,            ……10分

解法二: (Ⅰ),…………………………………1分

,∴,即,①……2分

    ②

將①代入②中,可得   ③    …………………4分

將③代入①中,得……………………………………5分

   …………………………………6分

(Ⅱ) 方法一 ∵,,∴,且……7分

,從而.      …………………8分

由(Ⅰ)知, ;     ………………9分

.     ………………………………10分

又∵,∴, 又,∴    ……11分

綜上可得  ………………………………12分

方法二∵,,∴,且…………7分

.                                 ……………8分

由(Ⅰ)知, .                …………9分

             ……………10分

,且注意到,

,又,∴   ………………………11分

綜上可得                    …………………12分

(若用,又∵ ∴ ,

 

查看答案和解析>>

在△ABC中,角A、B、C的對邊分別為a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),滿足=

(Ⅰ)求角B的大小;

(Ⅱ)設=(sin(C+),), =(2k,cos2A) (k>1),  有最大值為3,求k的值.

【解析】本試題主要考查了向量的數(shù)量積和三角函數(shù),以及解三角形的綜合運用

第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又

p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,

根據(jù)正弦定理,可化為a(a-c)+(b+c)(c-b)=0,

,又由余弦定理=2acosB,所以cosB=,B=

第二問中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A

=2ksinA+-=-+2ksinA+=-+ (k>1).

而0<A<,sinA∈(0,1],故當sin=1時,m·n取最大值為2k-=3,得k=.

 

查看答案和解析>>

已知向量=(), =().

(1)當時,求的值。

(2)已知=,的值。

【解析】本試題主要考查了向量的數(shù)量積的運算,以及構造角求解三角函數(shù)值的運用。

第一問中,利用

第二問中,結合第一問中 = 

然后,構造角得到結論。

解、(1)

(2)因為:

 = 

所以:          

因為:

 

=

 

查看答案和解析>>


同步練習冊答案