題目列表(包括答案和解析)
因為,所以點P為線段AC的中點,所以應該選B。
答案:B。
【命題立意】:本題考查了向量的加法運算和平行四邊形法則,可以借助圖形解答。
雙曲線的一條漸近線為,由方程組,消去y,得有唯一解,所以△=,
所以,,故選D. w.w.w.k.s.5.u.c.o.m
答案:D.
【命題立意】:本題考查了雙曲線的漸近線的方程和離心率的概念,以及直線與拋物線的位置關系,只有一個公共點,則解方程組有唯一解.本題較好地考查了基本概念基本方法和基本技能.
已知向量(),向量,,
且.
(Ⅰ)求向量; (Ⅱ)若,,求.
【解析】本試題主要考查了向量的數(shù)量積的運算,以及兩角和差的三角函數(shù)關系式的運用。
(1)問中∵,∴,…………………1分
∵,得到三角關系是,結合,解得。
(2)由,解得,,結合二倍角公式,和,代入到兩角和的三角函數(shù)關系式中就可以求解得到。
解析一:(Ⅰ)∵,∴,…………1分
∵,∴,即 ① …………2分
又 ② 由①②聯(lián)立方程解得,,5分
∴ ……………6分
(Ⅱ)∵即,, …………7分
∴, ………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴,即,①……2分
又 ②
將①代入②中,可得 ③ …………………4分
將③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一 ∵,,∴,且……7分
∴,從而. …………………8分
由(Ⅰ)知, ; ………………9分
∴. ………………………………10分
又∵,∴, 又,∴ ……11分
綜上可得 ………………………………12分
方法二∵,,∴,且…………7分
∴. ……………8分
由(Ⅰ)知, . …………9分
∴ ……………10分
∵,且注意到,
∴,又,∴ ………………………11分
綜上可得 …………………12分
(若用,又∵ ∴ ,
在△ABC中,角A、B、C的對邊分別為a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),滿足=
(Ⅰ)求角B的大小;
(Ⅱ)設=(sin(C+),), =(2k,cos2A) (k>1), 有最大值為3,求k的值.
【解析】本試題主要考查了向量的數(shù)量積和三角函數(shù),以及解三角形的綜合運用
第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根據(jù)正弦定理,可化為a(a-c)+(b+c)(c-b)=0,
即,又由余弦定理=2acosB,所以cosB=,B=
第二問中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A
=2ksinA+-=-+2ksinA+=-+ (k>1).
而0<A<,sinA∈(0,1],故當sin=1時,m·n取最大值為2k-=3,得k=.
已知向量=(), =().
(1)當時,求的值。
(2)已知=,求的值。
【解析】本試題主要考查了向量的數(shù)量積的運算,以及構造角求解三角函數(shù)值的運用。
第一問中,利用
第二問中,結合第一問中 =
然后,構造角得到結論。
解、(1)
(2)因為:
=
所以:
因為:
=
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com