題目列表(包括答案和解析)
16 | 27 |
已知,且,,,三數(shù)大小關(guān)系為 ( )
已知,且,,,三數(shù)大小關(guān)系為 ( )
已知函數(shù)的圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求在區(qū)間上的最大值;
(Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說(shuō)明理由.
【解析】第一問(wèn)當(dāng)時(shí),,則。
依題意得:,即 解得
第二問(wèn)當(dāng)時(shí),,令得,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值
第三問(wèn)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。
不妨設(shè),則,顯然
∵是以O(shè)為直角頂點(diǎn)的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無(wú)解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
(Ⅰ)當(dāng)時(shí),,則。
依題意得:,即 解得
(Ⅱ)由(Ⅰ)知,
①當(dāng)時(shí),,令得
當(dāng)變化時(shí),的變化情況如下表:
0 |
|||||
— |
0 |
+ |
0 |
— |
|
單調(diào)遞減 |
極小值 |
單調(diào)遞增 |
極大值 |
單調(diào)遞減 |
又,,!在上的最大值為2.
②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;
當(dāng)時(shí), 在上單調(diào)遞增!在最大值為。
綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;
當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為。
(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。
不妨設(shè),則,顯然
∵是以O(shè)為直角頂點(diǎn)的直角三角形,∴
即 (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;
若方程(*)無(wú)解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.
若,則代入(*)式得:
即,而此方程無(wú)解,因此。此時(shí),
代入(*)式得: 即 (**)
令 ,則
∴在上單調(diào)遞增, ∵ ∴,∴的取值范圍是。
∴對(duì)于,方程(**)總有解,即方程(*)總有解。
因此,對(duì)任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上
一.選擇題:DBBAC DBDBD
解析:1:由sinx>cosx得cosx-sinx<0, 即cos2x<0,所以:+kπ<2x<+kπ,選D.
2:∵復(fù)數(shù)3-i的一個(gè)輻角為-π/6,對(duì)應(yīng)的向量按順時(shí)針?lè)较蛐D(zhuǎn)π/3,
所得向量對(duì)應(yīng)的輻角為-π/2,此時(shí)復(fù)數(shù)應(yīng)為純虛數(shù),對(duì)照各選擇項(xiàng),選(B)。
3:由又代入選擇支檢驗(yàn)被排除;又由,即被排除.故選.
4:依題意有, ① ②
由①2-②×2得,,解得。
又由,得,所以不合題意。故選A。
5:令,這兩個(gè)方程的曲線交點(diǎn)的個(gè)數(shù)就是原方程實(shí)數(shù)解的個(gè)數(shù).由于直線的斜率為,又所以僅當(dāng)時(shí),兩圖象有交點(diǎn).由函數(shù)的周期性,把閉區(qū)間分成
共個(gè)區(qū)間,在每個(gè)區(qū)間上,兩圖象都有兩個(gè)交點(diǎn),注意到原點(diǎn)多計(jì)一次,故實(shí)際交點(diǎn)有個(gè).即原方程有63個(gè)實(shí)數(shù)解.故選.
6:連接BE、CE則四棱錐E-ABCD的體積VE-ABCD=×3×3×2=6,又整個(gè)幾何體大于部分的體積,所求幾何體的體積V求> VE-ABCD,選(D)
|