易得直線:.由.得M(.-),------ 12分 查看更多

 

題目列表(包括答案和解析)

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得于是,所以

(2) ,設平面PCD的法向量,

,即.不防設,可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設點E的坐標為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

,,為常數(shù),離心率為的雙曲線上的動點到兩焦點的距離之和的最小值為,拋物線的焦點與雙曲線的一頂點重合。(Ⅰ)求拋物線的方程;(Ⅱ)過直線為負常數(shù))上任意一點向拋物線引兩條切線,切點分別為、,坐標原點恒在以為直徑的圓內,求實數(shù)的取值范圍。

【解析】第一問中利用由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點為,所以拋物線的方程

第二問中,,,

故直線的方程為,即,

所以,同理可得:

借助于根與系數(shù)的關系得到即是方程的兩個不同的根,所以

由已知易得,即

解:(Ⅰ)由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點為,所以拋物線的方程

(Ⅱ)設,,

故直線的方程為,即,

所以,同理可得:

,是方程的兩個不同的根,所以

由已知易得,即

 

查看答案和解析>>

關于平面向量的數(shù)量積運算與實數(shù)的乘法運算相類比,易得下列結論:
a
b
=
b
a
;②(
a
b
)•
c
=
a
•(
b
c
)
;③
a
•(
b
+
c
)=
a
b
+
a
c
;
|
a
b
|=|
a
|•|
b
|
;⑤由
a
b
=
a
c
(
a
0
)
,可得
b
=
c

以上通過類比得到的結論正確的有( 。
A、2個B、3個C、4個D、5個

查看答案和解析>>

將平面向量的數(shù)量積運算與實數(shù)的乘法運算相類比,易得下列結論:
(1)
a
b
=
b
a
;
(2)(
a
b
)•
c
=
a
 •(
b
c
)

(3)
a
•(
b
+
c
)=
a
b
+
a
• 
c
;
(4)由
a
b
=
a
c
(
a
0
)
可得
b
=
c

以上通過類比得到的結論正確的有( 。

查看答案和解析>>

關于平面向量的數(shù)量積運算與實數(shù)的乘法運算相類比,易得下列結論:①;②;③;

;⑤由可得

以上通過類比得到的結論正確的有(    )

A.2個           B.3個           C.4個           D.5個

 

查看答案和解析>>


同步練習冊答案