在直角坐標(biāo)平面上有一點(diǎn)列P1()..-..-對每 查看更多

 

題目列表(包括答案和解析)

在直角坐標(biāo)平面上有一點(diǎn)列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對一切正整數(shù)n,點(diǎn)Pn在函數(shù)y=3x+
13
4
的圖象上,且Pn的橫坐標(biāo)構(gòu)成以-
5
2
為首項(xiàng),-1為公差的等差數(shù)列{xn}.
(1)求點(diǎn)Pn的坐標(biāo);
(2)設(shè)拋物線列C1,C2,C3,…,Cn,…中的每一條的對稱軸都垂直于x軸,拋物線Cn的頂點(diǎn)為Pn,且過點(diǎn)Dn(0,n2+1).記與拋物線Cn相切于點(diǎn)Dn的直線的斜率為kn,求
1
k1k2
+
1
k2k3
+…+
1
kn-1kn
;
(3)設(shè)S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差數(shù)列{an}的任一項(xiàng)an∈S∩T,其中a1是S∩T中的最大數(shù),-265<a10<-125,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

在直角坐標(biāo)平面上有一點(diǎn)列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對一切正整數(shù)n,點(diǎn)Pn在函數(shù)數(shù)學(xué)公式的圖象上,且Pn的橫坐標(biāo)構(gòu)成以數(shù)學(xué)公式為首項(xiàng),-1為公差的等差數(shù)列{xn}.
(1)求點(diǎn)Pn的坐標(biāo);
(2)設(shè)拋物線列C1,C2,C3,…,Cn,…中的每一條的對稱軸都垂直于x軸,拋物線Cn的頂點(diǎn)為Pn,且過點(diǎn)Dn(0,n2+1).記與拋物線Cn相切于點(diǎn)Dn的直線的斜率為kn,求數(shù)學(xué)公式;
(3)設(shè)S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差數(shù)列{an}的任一項(xiàng)an∈S∩T,其中a1是S∩T中的最大數(shù),-265<a10<-125,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

在直角坐標(biāo)平面上有一點(diǎn)列P1,y1),P2(x2,y2),…,Pn(xn,yn),…,對一切正整數(shù)n,點(diǎn)Pn在函數(shù)的圖象上,且Pn的橫坐標(biāo)構(gòu)成以為首項(xiàng),﹣1為公差的等差數(shù)列{xn}.
(1)求點(diǎn)Pn的坐標(biāo);
(2)設(shè)拋物線列,C2,C3,…,Cn,…中的每一條的對稱軸都垂直于x軸,拋物線Cn的頂點(diǎn)為Pn,且過點(diǎn)Dn(0,n2+1).記與拋物線Cn相切于點(diǎn)Dn的直線的斜率為kn,求;
(3)設(shè)S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差數(shù)列{}的任一項(xiàng)∈S∩T,其中a1是S∩T中的最大數(shù),﹣265<a10<﹣125,求數(shù)列{}的通項(xiàng)公式.

查看答案和解析>>

在直角坐標(biāo)平面上有一點(diǎn)列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對一切正整數(shù)n,點(diǎn)Pn在函數(shù)的圖象上,且Pn的橫坐標(biāo)構(gòu)成以為首項(xiàng),﹣1為公差的等差數(shù)列{xn}.
(1)求點(diǎn)Pn的坐標(biāo);
(2)設(shè)拋物線列,C2,C3,…,Cn,…中的每一條的對稱軸都垂直于x軸,拋物線Cn的頂點(diǎn)為Pn,且過點(diǎn)Dn(0,n2+1).記與拋物線Cn相切于點(diǎn)Dn的直線的斜率為kn,求
(3)設(shè)S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差數(shù)列{an}的任一項(xiàng)an∈S∩T,其中a1是S∩T中的最大數(shù),﹣265<a10<﹣125,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

在直角坐標(biāo)平面上有一點(diǎn)列P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),…,對一切正整數(shù)n,點(diǎn)Pn在函數(shù)y=3x+
13
4
的圖象上,且Pn的橫坐標(biāo)構(gòu)成以-
5
2
為首項(xiàng),-1為公差的等差數(shù)列{xn}.
(1)求點(diǎn)Pn的坐標(biāo);
(2)設(shè)拋物線列C1,C2,C3,…,Cn,…中的每一條的對稱軸都垂直于x軸,拋物線Cn的頂點(diǎn)為Pn,且過點(diǎn)Dn(0,n2+1).記與拋物線Cn相切于點(diǎn)Dn的直線的斜率為kn,求
1
k1k2
+
1
k2k3
+…+
1
kn-1kn

(3)設(shè)S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差數(shù)列{an}的任一項(xiàng)an∈S∩T,其中a1是S∩T中的最大數(shù),-265<a10<-125,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分.

1.A  2.C  3.C  4.A   5.C   6.C  7.B  8.C   9.D  10.D   11.D  12.D

二、填空題:本大題共4小題,每小題4分,共16分.

13.   14.    15.     16.40

三、解答題:本大題共6小題,共74分解答應(yīng)寫出文字說明,證明過程或演算步驟.

17.解:

,聯(lián)合

,即

當(dāng)時,

當(dāng)時,

∴當(dāng)時,

當(dāng)時,

18.解:由題意可知,這個幾何體是直三棱柱,且AC⊥BC,AC=BC=CC1.

   (1)連結(jié)AC1,AB1.

    由直三棱柱的性質(zhì)得AA1⊥平面A1B1C1,所以AA1⊥A1B1,則四邊形ABB1A1為短形.

    由矩形性質(zhì)得AB1過A1B的中點(diǎn)M.

在△AB1C1中,由中位線性質(zhì)得MN//AC1,

    又AC1平面ACC1A1,MN平面ACC1A1,

所以MN//平面ACC1A1

   (2)因?yàn)锽C⊥平面ACC1A1,AC平面ACC1A1,所以BC⊥AC1.

在正方形ACC1A1中,A1C⊥AC1.

又因?yàn)锽C∩A1C=C,所以AC1⊥平面A1BC.

由MN//AC1,得MN⊥平面A1BC

19.解:(1)基本事件空間與點(diǎn)集中                                     

的元素一一對應(yīng). 

    因?yàn)镾中點(diǎn)的總數(shù)為5×5=25(個),所以基本事侉總數(shù)為n=25

    事件A包含的基本事件數(shù)共5個:

    (1,5)、(2,4)、(3,3)、(4,2)、(5,1),

所以

   (2)B與C不是互斥事件.因?yàn)槭录﨎與C可以同時發(fā)生,如甲贏一次,乙贏兩次的事件即符合題意

   (3)這種游戲規(guī)則不公平.由 (Ⅰ)知和為偶數(shù)的基本事件數(shù)為13個:

(1,1)、(1,3)、(1,5)、(2,2)、(2,4)、(3,1)、(3,3)、(3,5)、(4,2)、(4,4)、(5,1)、 (5,3)、(5,5)

所以甲贏的概率為,乙贏的概率為,

    所以這種游戲規(guī)則不公平.

20.(1)依題意,點(diǎn)的坐標(biāo)為,可設(shè),

直線的方程為,與聯(lián)立得

消去

由韋達(dá)定理得,

于是

*   當(dāng),

   (2)假設(shè)滿足條件的直線存在,其方程為,

設(shè)的中點(diǎn)為為直徑的圓相交于點(diǎn),的中點(diǎn)為,

,點(diǎn)的坐標(biāo)為

,

,

,得,此時為定值,故滿足條件的直線存在,其方程為,即拋物線的通徑所在的直線.

21.解:(1)當(dāng)時,,

,∴上是減函數(shù).

   (2)∵不等式恒成立,即不等式恒成立,

不等式恒成立. 當(dāng)時,  不恒成立;

當(dāng)時,不等式恒成立,即,∴.

當(dāng)時,不等式不恒成立. 綜上,的取值范圍是.

22.解:(1)∵ 的橫坐標(biāo)構(gòu)成以為首項(xiàng),為公差的等差數(shù)列

.

位于函數(shù)的圖象上,

,

∴ 點(diǎn)的坐標(biāo)為.

   (2)據(jù)題意可設(shè)拋物線的方程為:,

∵ 拋物線過點(diǎn)(0,),

,

  ∴

∵ 過點(diǎn)且與拋物線只有一個交點(diǎn)的直線即為以為切點(diǎn)的切線,

),

   (3)∵    ,

中的元素即為兩個等差數(shù)列中的公共項(xiàng),它們組成以為首項(xiàng),以為公差的等差數(shù)列.

,且成等差數(shù)列,中的最大數(shù),

,其公差為

*當(dāng)時,

此時    ∴ 不滿足題意,舍去.

*當(dāng)時,

此時,

當(dāng)時,

此時, 不滿足題意,舍去.

綜上所述,所求通項(xiàng)為

 

 

 


同步練習(xí)冊答案