題目列表(包括答案和解析)
如圖,點、、是相應(yīng)橢圓的焦點,、和、分別是“果圓”與、軸的交點.
(1)若是邊長為1的等邊三角形,求“果圓”的方程;
(2)當(dāng)時,求的取值范圍;
(3)連接“果圓”上任意兩點的線段稱為“果圓”的弦.試研究:是否存在實數(shù),使斜率為的“果圓”平行弦的中點軌跡總是落在某個橢圓上?若存在,求出所有可能的值;若不存在,說明理由.
圖6
我們把由半橢圓=1(x≥0)與半橢圓=1(x≤0)合成的曲線稱作“果圓”,其中a2=b2+c2,a>0,b>c>0.
如圖6,點F0、F1、F2是相應(yīng)橢圓的焦點,A1、A2和B1、B2分別是“果圓”與x、y軸的交點.〔(文)M是線段A1A2的中點〕
(1)(理)若△F0F1F2是邊長為1的等邊三角形,求“果圓”的方程.
(2)(理)當(dāng)|A1A2|>|B1B2|時,求的取值范圍.
(文)設(shè)P是“果圓”的半橢圓=1(x≤0)上任意一點,求證:當(dāng)|PM|取得最小值時,P在點B1、B2或A1處.
(3)(理)連結(jié)“果圓”上任意兩點的線段稱為“果圓”的弦.試研究:是否存在實數(shù)k,使斜率為k的“果圓”平行弦的中點軌跡總是落在某個橢圓上?若存在,求出所有可能的k值;若不存在,請說明理由.
(文)若P是“果圓”上任意一點,求|PM|取得最小值時點P的橫坐標.
已知雙曲線G的中心在原點,它的漸近線與圓相切,過點P(-4,0)作斜率為的直線l,使得l和G交于A、B兩點,和y軸交于點C,并且點P在線段AB上,又滿足
(1)求雙曲線G的漸近線方程
(2)求雙曲線G的方程
(3)橢圓S的中心在原點,它的短軸是G的實軸,如果S中垂直于l的平行弦的中點軌跡恰好是G的漸近線截在S內(nèi)的部分,求橢圓S的方程。
x2 |
2 |
1 |
2 |
1 |
2 |
y2 |
3 |
3 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com