解答:(Ⅰ)顯然..的斜率都是存在的.設(shè).則-----------------------------------1分 查看更多

 

題目列表(包括答案和解析)

(1)若橢圓的方程是:
x2
a2
+
y2
b2
=1(a>b>0),它的左、右焦點依次為F1、F2,P是橢圓上異于長軸端點的任意一點.在此條件下我們可以提出這樣一個問題:“設(shè)△PF1F2的過P角的外角平分線為l,自焦點F2引l的垂線,垂足為Q,試求Q點的軌跡方程?”
對該問題某同學(xué)給出了一個正確的求解,但部分解答過程因作業(yè)本受潮模糊了,我們在
精英家教網(wǎng)
這些模糊地方劃了線,請你將它補(bǔ)充完整.
解:延長F2Q 交F1P的延長線于E,據(jù)題意,
E與F2關(guān)于l對稱,所以|PE|=|PF2|.
所以|EF1|=|PF1|+|PE|=|PF1|+|PF2|=
 

在△EF1F2中,顯然OQ是平行于EF1的中位線,
所以|OQ|=
1
2
|EF1|=
 

注意到P是橢圓上異于長軸端點的點,所以Q點的軌跡是
 

其方程是:
 

(2)如圖2,雙曲線的方程是:
x2
a2
-
y2
b2
=1(a,b>0),它的左、右焦點依次為F1、F2,P是雙曲線上異于實軸端點的任意一點.請你試著提出與(1)類似的問題,并加以證明.

查看答案和解析>>

(2009•金山區(qū)二模)設(shè)函數(shù)f(x)=x2+x.(1)解不等式:f(x)<0;(2)請先閱讀下列材料,然后回答問題.
材料:已知函數(shù)g(x)=-
1
f(x)
,問函數(shù)g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,說明理由.一個同學(xué)給出了如下解答:
解:令u=-f(x)=-x2-x,則u=-(x+
1
2
2+
1
4
,
當(dāng)x=-
1
2
時,u有最大值,umax=
1
4
,顯然u沒有最小值,
∴當(dāng)x=-
1
2
時,g(x)有最小值4,沒有最大值.
請回答:上述解答是否正確?若不正確,請給出正確的解答;
(3)設(shè)an=
f(n)
2n-1
,請?zhí)岢龃藛栴}的一個結(jié)論,例如:求通項an.并給出正確解答.
注意:第(3)題中所提問題單獨給分,.解答也單獨給分.本題按照所提問題的難度分層給分,解答也相應(yīng)給分,如果同時提出兩個問題,則就高不就低,解答也相同處理.

查看答案和解析>>

若x1、x2是關(guān)于一元二次方程ax2+bx+c(a≠0)的兩個根,則方程的兩個根x1、x2和系數(shù)a、b、c有如下關(guān)系:x1+x2=-,x1•x2.把它稱為一元二次方程根與系數(shù)關(guān)系定理.如果設(shè)二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0).利用根與系數(shù)關(guān)系定理可以得到A、B連個交點間的距離為:

AB=|x1-x2|=

參考以上定理和結(jié)論,解答下列問題:

設(shè)二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個交點A(x1,0)、B(x2,0),拋物線的頂點為C,顯然△ABC為等腰三角形.

(1)當(dāng)△ABC為直角三角形時,求b2-4ac的值;

(2)當(dāng)△ABC為等邊三角形時,求b2-4ac的值.

 

查看答案和解析>>

設(shè)函數(shù)f(x)=x2+x.(1)解不等式:f(x)<0;(2)請先閱讀下列材料,然后回答問題.
材料:已知函數(shù)g(x)=,問函數(shù)g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,說明理由.一個同學(xué)給出了如下解答:
解:令u=-f(x)=-x2-x,則u=-(x+2+
當(dāng)x=-時,u有最大值,umax=,顯然u沒有最小值,
∴當(dāng)x=-時,g(x)有最小值4,沒有最大值.
請回答:上述解答是否正確?若不正確,請給出正確的解答;
(3)設(shè)an=,請?zhí)岢龃藛栴}的一個結(jié)論,例如:求通項an.并給出正確解答.
注意:第(3)題中所提問題單獨給分,.解答也單獨給分.本題按照所提問題的難度分層給分,解答也相應(yīng)給分,如果同時提出兩個問題,則就高不就低,解答也相同處理.

查看答案和解析>>

(2012•黃浦區(qū)二模)已知函數(shù)y=f(x)是定義域為R的偶函數(shù),且對x∈R,恒有f(1+x)=f(1-x).又當(dāng)x∈[0,1]時,f(x)=x.
(1)當(dāng)x∈[-1,0]時,求f(x)的解析式;
(2)求證:函數(shù)y=f(x)(x∈R)是以T=2為周期的周期函數(shù);
(3)解答本小題考生只需從下列三個問題中選擇一個寫出結(jié)論即可(無需寫解題步驟).注意:考生若選擇多于一個問題解答,則按分?jǐn)?shù)最低一個問題的解答正確與否給分.
①當(dāng)x∈[2n-1,2n](n∈Z)時,求f(x)的解析式.
②當(dāng)x∈[2n-1,2n+1](其中n是給定的正整數(shù))時,若函數(shù)y=f(x)的圖象與函數(shù)y=kx的圖象有且僅有兩個公共點,求實數(shù)k的取值范圍.
③當(dāng)x∈[0,2n](n是給定的正整數(shù)且n≥3)時,求f(x)的解析式.

查看答案和解析>>


同步練習(xí)冊答案