BO=DO.BC=CD.COBD. 查看更多

 

題目列表(包括答案和解析)

(2010•廣東模擬)如圖,PO⊥ABCD,點O在AB上,EA∥PO,四邊形ABCD為直角梯形,BC⊥AB,BC=CD=BO=PO,EA=AO=
12
CD
(1)求證:BC⊥平面ABPE;
(2)直線PE上是否存在點M,使DM∥平面PBC,若存在,求出點M;若不存在,說明理由.

查看答案和解析>>

(2013•懷化三模)如圖1中矩形ABCD中,已知AB=2,AD=2
2
,MN分別為AD和BC的中點,對角線BD與MN交于O點,沿MN把矩形ABNM折起,使平面ABNM與平面MNCD所成角為60°,如圖2
(1)求證:BO⊥DO;
(2)求AO與平面BOD所成角的正弦值.

查看答案和解析>>

精英家教網如圖,已知PO⊥平面ABCD,點O在AB上,EA∥PO,四邊形ABCD是直角梯形,AB∥DC,且BC⊥AB,BC=CD=BO=PO,EA=AO=
12
CD

(Ⅰ)求證:PE⊥平面PBC;
(Ⅱ)求二面角C-PB-D的大;
(Ⅲ)在線段PE上是否存在一點M,使DM∥平面PBC,若存在求出點M;若不存在,說明理由.

查看答案和解析>>

如圖1中矩形ABCD中,已知AB=2,,MN分別為AD和BC的中點,對角線BD與MN交于O點,沿MN把矩形ABNM折起,使平面ABNM與平面MNCD所成角為60°,如圖2
(1)求證:BO⊥DO;
(2)求AO與平面BOD所成角的正弦值.

查看答案和解析>>

如圖1中矩形ABCD中,已知AB=2,,MN分別為AD和BC的中點,對角線BD與MN交于O點,沿MN把矩形ABNM折起,使平面ABNM與平面MNCD所成角為60°,如圖2
(1)求證:BO⊥DO;
(2)求AO與平面BOD所成角的正弦值.

查看答案和解析>>


同步練習冊答案