(I)以為原點(diǎn).所在直線分別為軸.軸.軸建立如圖所示的空間直角坐標(biāo)系.則....,. ---..2分 查看更多

 

題目列表(包括答案和解析)

(1)選修4-2:矩陣與變換
若矩陣A有特征值λ1=2,λ2=-1,它們所對(duì)應(yīng)的特征向量分別為
(I)求矩陣A;
(II)求曲線x2+y2=1在矩陣A的變換下得到的新曲線方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線C1的參數(shù)方程為為參數(shù)),C2的參數(shù)方程為為參數(shù))
(I)若將曲線C1與C2上所有點(diǎn)的橫坐標(biāo)都縮短為原來的一半(縱坐標(biāo)不變),分別得到曲線C′1和C′2,求出曲線C′1和C′2的普通方程;
(II)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,求過極點(diǎn)且與C′2垂直的直線的極坐標(biāo)方程.
(3)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|2x-1|+|2x-3|,x∈R,
(I)求關(guān)于x的不等式f(x)≤5的解集;
(II)若的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

(本小題12分)

如圖,曲線是以原點(diǎn)為中心,以、為焦點(diǎn)的橢圓的一部分,曲線 是以為頂點(diǎn),以為焦點(diǎn)的拋物線的一部分,是曲線的交點(diǎn),且為鈍角,若,

(I)求曲線所在的橢圓和拋物線的方程;

(II)過作一條與軸不垂直的直線,分別與曲線、依次交于、、、四點(diǎn)(如圖),若的中點(diǎn),的中點(diǎn),問是否為定值?若是,求出定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

(本小題12分)

如圖,曲線是以原點(diǎn)為中心,以、為焦點(diǎn)的橢圓的一部分,曲線 是以為頂點(diǎn),以為焦點(diǎn)的拋物線的一部分,是曲線的交點(diǎn),且為鈍角,若,
(I)求曲線所在的橢圓和拋物線的方程;
(II)過作一條與軸不垂直的直線,分別與曲線依次交于、、四點(diǎn)(如圖),若的中點(diǎn),的中點(diǎn),問是否為定值?若是,求出定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

(1)選修4-2:矩陣與變換
已知矩陣M=()的兩^E值分別為λ1=-1和λ2=4.
(I)求實(shí)數(shù)的值;
(II )求直線x-2y-3=0在矩陣M所對(duì)應(yīng)的線性變換作用下的像的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn)x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線C的參數(shù)方程為
(a為餓),曲線D的鍵標(biāo)方程為ρsin(θ-)=-
(I )將曲線C的參數(shù)方程化為普通方程;
(II)判斷曲線c與曲線D的交點(diǎn)個(gè)數(shù),并說明理由.
(3)選修4-5:不等式選講
已知a,b為正實(shí)數(shù).
(I)求證:+≥a+b;
(II)利用(I)的結(jié)論求函數(shù)y=+(0<x<1)的最小值.

查看答案和解析>>

(1)選修4-2:矩陣與變換
已知矩陣M=(
2a
2b
)的兩^E值分別為λ1=-1和λ2=4.
(I)求實(shí)數(shù)的值;
(II )求直線x-2y-3=0在矩陣M所對(duì)應(yīng)的線性變換作用下的像的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn)x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線C的參數(shù)方程為
x=sinα
y=2cos2α-2
,
(a為餓),曲線D的鍵標(biāo)方程為ρsin(θ-
π
4
)=-
3
2
2

(I )將曲線C的參數(shù)方程化為普通方程;
(II)判斷曲線c與曲線D的交點(diǎn)個(gè)數(shù),并說明理由.
(3)選修4-5:不等式選講
已知a,b為正實(shí)數(shù).
(I)求證:
a2
b
+
b2
a
≥a+b;
(II)利用(I)的結(jié)論求函數(shù)y=
(1-x)2
x
+
x2
1-x
(0<x<1)的最小值.

查看答案和解析>>


同步練習(xí)冊(cè)答案